
Algorithms for Text Generation
The awes and mysteries of generate

François Yvon

ISIR — CNRS and Sorbonne Université

Aussois, April 2nd, 2025

F. Yvon (ISIR) Text Generation Algorithms Aussois, April 2nd, 2025 1 / 45

Goal and Motivations

Understanding Contextual Generation is Key

LLMs are multitask learners & problem solvers via prompting
contextual generation procedure a critical component

evaluation of linguistic abilities of LLMs requires generation
wrt. agreement, proper word order, semantic consistency etc.

test time inference and multi-step “reasoning” rely on meta-generation strategies

detecting artificial texts requires deep understanding of generation strategies

good artificial data helps ML
privacy, confidentiality, distillation / data augmentation, artificial text detection

computation of expectations Ew[1∶T]∼P(f(w[1∶T])) requires good text samples
e.g., to train GANs or PPO

F. Yvon (ISIR) Text Generation Algorithms Aussois, April 2nd, 2025 2 / 45

Goal and Motivations

Understanding Contextual Generation is Key

LLMs are multitask learners & problem solvers via prompting
contextual generation procedure a critical component

evaluation of linguistic abilities of LLMs requires generation
wrt. agreement, proper word order, semantic consistency etc.

test time inference and multi-step “reasoning” rely on meta-generation strategies

detecting artificial texts requires deep understanding of generation strategies

good artificial data helps ML
privacy, confidentiality, distillation / data augmentation, artificial text detection

computation of expectations Ew[1∶T]∼P(f(w[1∶T])) requires good text samples
e.g., to train GANs or PPO

F. Yvon (ISIR) Text Generation Algorithms Aussois, April 2nd, 2025 2 / 45

Goal and Motivations

Understanding Contextual Generation is Key

LLMs are multitask learners & problem solvers via prompting
contextual generation procedure a critical component

evaluation of linguistic abilities of LLMs requires generation
wrt. agreement, proper word order, semantic consistency etc.

test time inference and multi-step “reasoning” rely on meta-generation strategies

detecting artificial texts requires deep understanding of generation strategies

good artificial data helps ML
privacy, confidentiality, distillation / data augmentation, artificial text detection

computation of expectations Ew[1∶T]∼P(f(w[1∶T])) requires good text samples
e.g., to train GANs or PPO

F. Yvon (ISIR) Text Generation Algorithms Aussois, April 2nd, 2025 2 / 45

Goal and Motivations

Understanding Contextual Generation is Key

LLMs are multitask learners & problem solvers via prompting
contextual generation procedure a critical component

evaluation of linguistic abilities of LLMs requires generation
wrt. agreement, proper word order, semantic consistency etc.

test time inference and multi-step “reasoning” rely on meta-generation strategies

detecting artificial texts requires deep understanding of generation strategies

good artificial data helps ML
privacy, confidentiality, distillation / data augmentation, artificial text detection

computation of expectations Ew[1∶T]∼P(f(w[1∶T])) requires good text samples
e.g., to train GANs or PPO

F. Yvon (ISIR) Text Generation Algorithms Aussois, April 2nd, 2025 2 / 45

Goal and Motivations

Understanding Contextual Generation is Key

LLMs are multitask learners & problem solvers via prompting
contextual generation procedure a critical component

evaluation of linguistic abilities of LLMs requires generation
wrt. agreement, proper word order, semantic consistency etc.

test time inference and multi-step “reasoning” rely on meta-generation strategies

detecting artificial texts requires deep understanding of generation strategies

good artificial data helps ML
privacy, confidentiality, distillation / data augmentation, artificial text detection

computation of expectations Ew[1∶T]∼P(f(w[1∶T])) requires good text samples
e.g., to train GANs or PPO

F. Yvon (ISIR) Text Generation Algorithms Aussois, April 2nd, 2025 2 / 45

Goal and Motivations

Understanding Contextual Generation is Key

LLMs are multitask learners & problem solvers via prompting
contextual generation procedure a critical component

evaluation of linguistic abilities of LLMs requires generation
wrt. agreement, proper word order, semantic consistency etc.

test time inference and multi-step “reasoning” rely on meta-generation strategies

detecting artificial texts requires deep understanding of generation strategies

good artificial data helps ML
privacy, confidentiality, distillation / data augmentation, artificial text detection

computation of expectations Ew[1∶T]∼P(f(w[1∶T])) requires good text samples
e.g., to train GANs or PPO

F. Yvon (ISIR) Text Generation Algorithms Aussois, April 2nd, 2025 2 / 45

Goal and Motivations

This class

✔ understand the variety of controls for basic text generation
with generate as the main tool (generate has a similar, less complete interface)

✔ learn to generate texts with constraints

✔ explore some meta-generation algorithms

train LLMs for better / adapted / non-autoregressive / test time ... generation

generate
model_inputs = token i ze r (["A sequence of numbers: 1, 2"] , r e tu rn_ t en so r s="pt") . to ("cuda")

By defau l t , the output w i l l conta in up to 20 tokens
genera ted_ ids = model . generate (** model_inputs)
token i ze r . batch_decode (generated_ids , s k i p _ s p e c i a l _ t o k e n s=True)[0]

Se t t i ng ‘ max_new_tokens ‘ a l lows you to con t ro l the maximum length
genera ted_ ids = model . generate (** model_inputs , max_new_tokens=50)
token i ze r . batch_decode (generated_ids , s k i p _ s p e c i a l _ t o k e n s=True)[0]

F. Yvon (ISIR) Text Generation Algorithms Aussois, April 2nd, 2025 3 / 45

Part I

Basics

F. Yvon (ISIR) Text Generation Algorithms Aussois, April 2nd, 2025 4 / 45

Basics Concepts and Notations

A Language Model is a Distribution

Language Models (LM)

Assume finite vocabulary V, with V̄ = V ∪ {<s>,</s>}
A neural language model is a parameterized distribution over complete texts in <s>V∗</s> :

<s>w1 . . .wT</s>→ P(<s>w1 . . .wT</s> ∣θ)
∀T > 0,∀w1 . . .wT ,P(<s>w1 . . .wT</s> ∣θ) ≥ 0,

∑
T,w[1∶T]

P(<s>w1 . . .wT</s> ∣θ) = 1

Notations:

w[1∶T] = w1 . . .wT

[w[1∶T] assumes w0 = <s>, denotes a strict prefix (unless wT = </s>)

[w[1∶T]] assumes wT+1 = </s>, denotes a complete text

w<t = [w[1∶t−1] = <s>w1 . . .wt−1

[w−t] ∶ <s> . . .wt−1 wt+1 . . .wT</s>

for wT ≠ </s>, P([w1 . . .wT ∣θ) is a prefix probability

∑w[1∶T]
P([w1 . . .wT ∣θ) = 1 for same length prefixes

F. Yvon (ISIR) Text Generation Algorithms Aussois, April 2nd, 2025 5 / 45

Basics Concepts and Notations

A Language Model is a Distribution

Language Models (LM)

Assume finite vocabulary V, with V̄ = V ∪ {<s>,</s>}
A neural language model is a parameterized distribution over complete texts in <s>V∗</s> :

<s>w1 . . .wT</s>→ P(<s>w1 . . .wT</s> ∣θ)
∀T > 0,∀w1 . . .wT ,P(<s>w1 . . .wT</s> ∣θ) ≥ 0,

∑
T,w[1∶T]

P(<s>w1 . . .wT</s> ∣θ) = 1

Notations:

w[1∶T] = w1 . . .wT

[w[1∶T] assumes w0 = <s>, denotes a strict prefix (unless wT = </s>)

[w[1∶T]] assumes wT+1 = </s>, denotes a complete text

w<t = [w[1∶t−1] = <s>w1 . . .wt−1

[w−t] ∶ <s> . . .wt−1 wt+1 . . .wT</s>

for wT ≠ </s>, P([w1 . . .wT ∣θ) is a prefix probability

∑w[1∶T]
P([w1 . . .wT ∣θ) = 1 for same length prefixes

F. Yvon (ISIR) Text Generation Algorithms Aussois, April 2nd, 2025 5 / 45

Basics Concepts and Notations

Formalizing Text Generation as Search

Unconditional Text Generation: find “most likely text”

[w∗1 . . .w∗T∗] = argmax
T,[w[1∶T]]

P([w[1∶T]] ∣θ)

Finding T∗ is part of the problem

Conditional Text Generation: find “most likely response” given input context / query (MAP)

[w∗1 . . .w∗T∗] = argmax
T,[w[1∶T]]

P([w[1∶T]] ∣C,θ)

C : a prefix (text completion), a question (question answering), a source text (translation), a long text
(summarization), a speech file (transcription), an image (captioning), . . .

A variety of situations between open set generation (many acceptable texts) and near
deterministic generation (one single acceptable output)

F. Yvon (ISIR) Text Generation Algorithms Aussois, April 2nd, 2025 6 / 45

Basics Concepts and Notations

Formalizing Text Generation as Search

Unconditional Text Generation: Find the Mode

[w∗1 . . .w∗T∗] = argmax
T,[w[1∶T]]

P([w[1∶T]] ∣θ)

= argmax
T,[w[1∶T]]

T+1

∏
t=1

P(wt ∣w<t;θ) Chain rule for autoregressive / causal LMs

= argmax
T,[w[1∶T]]

log
T+1

∏
t=1

P(wt ∣w<t;θ) log is monotonous

= argmin
T,[w[1∶T]]

T+1

∑
t=1
− logP(wt ∣w<t;θ) log turns∏ into∑

− logP(wt ∣w<t;θ) > 0 is the surprisal; upper bounded by log ∣V∣
quantifies how much wt was expected given w<t, used in psycholinguistic studies

maxT,[w[1∶T]]
P([w[1∶T]] ∣θ) equivalently minimizes a summation of T + 1 surprisals

F. Yvon (ISIR) Text Generation Algorithms Aussois, April 2nd, 2025 6 / 45

Basics Concepts and Notations

Formalizing Text Generation as Search

Maximum “a posteriori” (MAP) Text Generation

P(w ∣w<t;θ) =
exp logit(w,w<t;θ)

∑w′∈V exp logit(w′,w<t;θ)
logP(w ∣w<t;θ) = logit(w,w<t;θ) − log ∑

w′∈V
exp logit(w′,w<t;θ)

[w∗1 . . .w∗T∗] = argmin
T,[w[1∶T]]

−(
T+1

∑
t=1

logit(wt,w<t;θ) − log∑
w′

exp logit(w′,w<t;θ))

= argmin
T,[w[1∶T]]

−
T+1

∑
t=1

logit(wt,w<t;θ)

X a finite set, f ∶ X → R a real function, exp f(x)
∑x′∈X exp f(x′) is the softmax

softmax(x) is always > 0; almost 1 for the largest f(x), almost 0 otherwise

computing the logits requires a full forward pass in Transformers (O(L × (T2 × dmodel + T × d2
model))

normalizer ∑w′∈V exp logit(w′,w<t;θ) can be expensive to compute (∑ over ∣V∣ terms)

F. Yvon (ISIR) Text Generation Algorithms Aussois, April 2nd, 2025 6 / 45

Basics Concepts and Notations

Searching, searching, searching

Z source https://towardsdatascience.com/decoding-strategies-that-you-need-to-know-for-response-generation

− logP(wt ∣w<t;θ) factorize / decompose over arcs⇒ incremental score computation

− logP(wt ∣w<t;θ) depends on the entire prefix⇒ no DP solution

exact search is doable [Stahlberg and Byrne, 2019], yet very costly⇒ heuristic search
(greedy, DFS, Beam, A∗, etc)

F. Yvon (ISIR) Text Generation Algorithms Aussois, April 2nd, 2025 7 / 45

https://towardsdatascience.com/decoding-strategies-that-you-need-to-know-for-response-generation

Basics Concepts and Notations

Searching, searching, searching

Z source https://towardsdatascience.com/decoding-strategies-that-you-need-to-know-for-response-generation

Variants and generalizations:

restrict solutions to a strict subset of <s>V∗</s>: calculability and complexity issues

use alternative, non-decomposable score functions F([w[1∶t]],C; θ)
use sparse output reward that only evaluate leaf nodes R([w[1∶T]],C; θ)

F. Yvon (ISIR) Text Generation Algorithms Aussois, April 2nd, 2025 7 / 45

https://towardsdatascience.com/decoding-strategies-that-you-need-to-know-for-response-generation

Evaluating Language Models Do Language Models Generate Valid Texts?

Language model (de)generation
Language Generation is Hard

The promise Z OpenAi Website https://openai.com/blog/better-language-models/

GPT-2 generates synthetic text samples in response to the model being primed with an arbitrary
input. The model is chameleon-like—it adapts to the style and content of the conditioning text.
This allows the user to generate realistic and coherent continuations about a topic of their
choosing, as seen by the following select samples.

GPT-2 displays a broad set of capabilities, including the ability to generate conditional synthetic
text samples of unprecedented quality, where we prime the model with an input and have it
generate a lengthy continuation.

F. Yvon (ISIR) Text Generation Algorithms Aussois, April 2nd, 2025 8 / 45

https://openai.com/blog/better-language-models/

Evaluating Language Models Do Language Models Generate Valid Texts?

Language model (de)generation
The truth about language model generation

Prefix Lyrically the song has excerpts of different languages including French , Spanish ,
Greedy German , Italian , Portuguese , Spanish , Portuguese , Portuguese , Portuguese , Por-

tuguese , Portuguese , Portuguese , Portuguese , Portuguese , Portuguese , Portuguese ,
Portuguese , Portuguese , Portuguese , ...

Top3 German , Italian , Portuguese , Spanish , Portuguese , Portuguese, Italian and Spanish.
It is also available in English, French and Spanish. In addition to its lyrics, the album
features a number of original songs, ...

Nucleus-0.3 German , Italian , Portuguese , Spanish , Portuguese , Italian , Portuguese , Spanish ,
Portuguese , Spanish , Portuguese , Spanish , Portuguese , Spanish , Portuguese , Spanish
, Portuguese , Spanish , Portuguese , Spanish , Portuguese , ...

Prefix The first pair of pereiopods is armed with a large , asymm
Greedy etrical, and long-range laser cannon. The second pair is armed with a large , asymmet-

rical, and long-range laser cannon. The third pair is armed with a large , asymmetrical,
and long-range laser cannon. The fourth pair is armed with a large ...

Top3 etrical, and highly mobile head, and the second pair has a small , asymmetrical, and
highly mobile head. The second pair has a large and highly mobile head, and the third
pair is armed with a large and highly mobile head. The first pair ...

Nucleus-0.3 etrical head and a large body. The first pair of pereiopods is armed with a large , asym-
metrical head and a large body. The first pair of pereiopods is armed with a large ,
asymmetrical head and a large body. The first pair of pereiopods is armed ...

GPT-2 generated examples from [Welleck et al., 2020b].

F. Yvon (ISIR) Text Generation Algorithms Aussois, April 2nd, 2025 8 / 45

Evaluating Language Models Do Language Models Generate Valid Texts?

Language model (de)generation
Language Generation is Hard

High probability sentences do not resemble human productions

too many repetitions

high frequency tokens over-represented, low frequency tokens under-represented

lack of lexical diversity

lack of global consistency

posterior distribution poorly calibrated

F. Yvon (ISIR) Text Generation Algorithms Aussois, April 2nd, 2025 8 / 45

Evaluating Language Models Do Language Models Generate Valid Texts?

Language model (de)generation
Language Generation is Hard

F. Yvon (ISIR) Text Generation Algorithms Aussois, April 2nd, 2025 8 / 45

Evaluating Language Models Figures of Merits for Language Models

Evaluating Language Models with Perplexity

Perplexity of a test sequence [w[1∶T]] [Brown et al., 1992]

PPL(Mθ) = 2
−1
T log2 P([w[1∶T]] ∣θ) = P([w[1∶T]] ∣θ)−

1
T

Assumes “sufficiently large” T . Alt take: normalizer = T+1.

The cross-entropy between the source (S) and model Mθ:

H(S,Mθ) = lim
T→∞

−1
T

log2 P([w[1∶T]] ∣θ)

H(S,Mθ) upper bounds H(S)
PLL() homogeneous to a vocabulary size

PPL(Unif) = 2
−1
T log2 P([w[1∶T]] ∣θ) = 2

−1
T T log2(1/∣V∣) = ∣V∣

F. Yvon (ISIR) Text Generation Algorithms Aussois, April 2nd, 2025 9 / 45

Evaluating Language Models Figures of Merits for Language Models

Evaluating Language Models with Perplexity
PPLs are hard to compare

Comparing LMs with different support or tokenizers ?
1 closed-world LMs assume a fixed vocabulary size ∣V∣ - models with different V cannot be

compared.

2 open-world models with different segmentations can be compared, must use a common
normalizer

3 typical normalizers when using subwords vocabularies

number of chars⇒ bits per char ≡ log2 of char-normalized PPL
number of bytes⇒ bits per byte ≡ log2 of byte-normalized PPL

Also ? Comparing LMs for different languages?

F. Yvon (ISIR) Text Generation Algorithms Aussois, April 2nd, 2025 9 / 45

Evaluating Language Models Figures of Merits for Language Models

Evaluating Language Models with Perplexity

Implementing ∑T
t=1 logP(wt ∣w<t;θ) with finite, fixed-length window of size L?

4 possible implementations

split in short parts of length Ti < L (lines, paragraphs), average over parts;

“reshape” text into ⌊T/L⌋ sequences of length L, average logP(wL ∣w<L) over blocks

“reshape” text into T − L sequences of length L with shift 1, average logP(wL ∣w<L) over
blocks;

“reshape” text into ⌊2 × (T − L)/L⌋ sequences of length L with shift L/2, average
∑L

t=L/2 logP(wt ∣w<t) over blocks;

Z https://huggingface.co/docs/transformers/perplexity

F. Yvon (ISIR) Text Generation Algorithms Aussois, April 2nd, 2025 9 / 45

https://huggingface.co/docs/transformers/perplexity

Evaluating Language Models Figures of Merits for Language Models

Evaluating Language Models with Perplexity

Implementing ∑T
t=1 logP(wt ∣w<t;θ) with finite, fixed-length window of size L?

4 possible implementations

split in short parts of length Ti < L (lines, paragraphs), average over parts;

“reshape” text into ⌊T/L⌋ sequences of length L, average logP(wL ∣w<L) over blocks

“reshape” text into T − L sequences of length L with shift 1, average logP(wL ∣w<L) over
blocks;

“reshape” text into ⌊2 × (T − L)/L⌋ sequences of length L with shift L/2, average
∑L

t=L/2 logP(wt ∣w<t) over blocks;

Z https://huggingface.co/docs/transformers/perplexity

Another Caveat: segmentation ambiguities and exact surprisal computations

P(abcd ∣θ) =∑P(a_bcd ∣θ) +P(ab_cd ∣θ) + ...P(abc_d ∣θ)

F. Yvon (ISIR) Text Generation Algorithms Aussois, April 2nd, 2025 9 / 45

https://huggingface.co/docs/transformers/perplexity

Evaluating Language Models Figures of Merits for Language Models

Evaluating LMs with distributional properties

rep/ℓ: a repetition / diversity metric [Welleck et al., 2020b]

Given a set D of length-T sequences,

rep/ℓ = 1
∣D∣T ∑x∈D

T
∑
t=1

I [wt ∈ wt−ℓ−1∶t−1].

I the indicator function. Generalizes to repeated n-gram sequences.

F. Yvon (ISIR) Text Generation Algorithms Aussois, April 2nd, 2025 10 / 45

Evaluating Language Models Figures of Merits for Language Models

Evaluating LMs with distributional properties

rep/ℓ: a repetition / diversity metric [Welleck et al., 2020b]

Given a set D of length-T sequences,

rep/ℓ = 1
∣D∣T ∑x∈D

T
∑
t=1

I [wt ∈ wt−ℓ−1∶t−1].

I the indicator function. Generalizes to repeated n-gram sequences.

Global distributional properties [Meister and Cotterell, 2021]

Zipfian behavior, power-law distribution

Pzipf(W = wk) ∝ k−s, s ≈ 1

wk is the kth most frequent token

type-token ratios (TTR) (depend on length)

proportion of frequency 1 words (hapax legomena)

proportion specific of token classes (punctuation, stopwords, nouns, etc)

consistency metrics ?

F. Yvon (ISIR) Text Generation Algorithms Aussois, April 2nd, 2025 10 / 45

Evaluating Language Models Evaluating LMs through Instruction-based Generation

Evaluating zero-shot / few-shot behaviour
Reduce NLP tasks to text generation with appropriate instructions in NL as prompts

Prompts = instructions in Natural Language + [tricks] (from [Brown et al., 2020])

Specifically, we evaluate GPT-3 on over two dozen NLP datasets,(...) For each task, we evaluate
GPT-3 under 3 conditions:

“zero-shot” learning, where no demonstrations are allowed and only an instruction in
natural language is given to the model.
“Evaluate 125 + 12 =”

“one-shot learning”, where we allow only one demonstration, and
“Evaluate 17 + 301 = 318 </s>Evaluate 125 + 12 = ”

“few-shot learning”, or in-context learning, where we allow as many demonstrations as will
fit into the model’s context window,
“Evaluate 17 + 301 = 318 </s>Evaluate 48 + 67 = 105 </s>Evaluate 125 + 12 = ”

Tricks: “On tasks with free-form completion, we use beam search with the same parameters as [
RSR+19]: a beam width of 4 and a length penalty of α = 0.6.” (+ stopping criterion)

F. Yvon (ISIR) Text Generation Algorithms Aussois, April 2nd, 2025 11 / 45

Evaluating Language Models Evaluating LMs through Instruction-based Generation

Evaluating zero-shot / few-shot behaviour
Reduce NLP tasks to text generation with appropriate instructions in NL as prompts

Task types and their evaluation [Biderman et al., 2024]

Assuming prompt / instruction: w1 . . .wT .

Yes / No answers

Question: [Question] True or false? [prediction]

Correct if P(True ∣prompt) > P(False ∣prompt).
Multiple choice answers.

Question: Which factor will most likely cause a person to develop a fever?
Correct Answer a bacterial population in the bloodstream
Incorrect Answer a leg muscle relaxing after exercise
Incorrect Answer several viral particles on the skin
Incorrect Answer carbohydrates being digested in the stomach

Correct if P(Correct answer ∣prompt) > P(Alternative ∣prompt)
Alt. take - index choices with letter or numbers, evaluate the probability of the correct index.

One word continuation. Correct if (wT+1 == w∗)

Multiple word continuation. Measure ∆(wT+1 . . .wT+S;w∗1 . . .w∗L) with ∆() task-dependent
distance (ROUGE for summarization, BLEU for MT, etc)

F. Yvon (ISIR) Text Generation Algorithms Aussois, April 2nd, 2025 11 / 45

Evaluating Language Models Evaluating LMs through Instruction-based Generation

Evaluating zero-shot / few-shot behaviour
Reduce NLP tasks to text generation with appropriate instructions in NL as prompts

Understanding “instruction learning” results

Should pay attention to:

how much effort went into prompting ?

how many shots is few shots?

free generation or text infilling or multi-choice answers ?

how were alternatives selected / generated ?

how was search performed (greedy or beam) ?

how does generation stops?

F. Yvon (ISIR) Text Generation Algorithms Aussois, April 2nd, 2025 11 / 45

Part II

Algorithms for Text Generation

F. Yvon (ISIR) Text Generation Algorithms Aussois, April 2nd, 2025 12 / 45

Single pass decoding

Deterministic Algorithms for Text Generation
Searching for the Maximum “A Posteriori”

Greedy search (a.k.a argmax)

w0 =<s>

∀t > 0,wt = argmax
w∈V̄

logP(w ∣w<t)

V̄ = V ∪ {<s>,</s>}
Generation stops with </s> or when some maximum length Tmax is reached.

Greedy search is deterministic: always produces the same output, given its initial conditions.

Does not require to compute softmax normalizer log(∑ exp())

F. Yvon (ISIR) Text Generation Algorithms Aussois, April 2nd, 2025 13 / 45

Single pass decoding

Deterministic Algorithms for Text Generation
Searching for the Maximum “A Posteriori”

Beam search [with histogram pruning]

B0 = {<s>}
∀t > 0,Bt = argmax

B′t⊆Ht,

∣B′t ∣=k

L(B′t)

Bt is the beam, Ht contains all possible extensions of Ht−1.

L is a scoring function that operates over sets B, eg. L(B) = ∑w[1∶t]∈B logP(w[1∶t]).

For k = 1, beam search is greedy search

Beam search is also deterministic

For k > 1, does require to compute softmax normalizer log(∑ exp()).
Also: adaptive beam size, with Bt containing all outputs with score within α % of the current best.

A faster version borrows ideas from A∗ search [Meister et al., 2020b]

generate: k = num_beams

F. Yvon (ISIR) Text Generation Algorithms Aussois, April 2nd, 2025 13 / 45

Single pass decoding

Deterministic Algorithms for Text Generation
Searching for the Maximum “A Posteriori”

Vanilla Beam stopping condition

([w∗[1∶t], s
∗
t) = argmaxs Bt, w∗t = </s>

In words: the top hypothesis in the beam is complete.

F. Yvon (ISIR) Text Generation Algorithms Aussois, April 2nd, 2025 13 / 45

Single pass decoding

Deterministic Algorithms for Text Generation
Flavors of Beam Search - Delivering k solutions [Kasai et al., 2024]

k: beam size, M: maximum length,
V: Vocabulary, score(⋅): scoring function.
1: B0 ← {⟨0,<s>⟩}
2: for t ∈ {1, . . . ,M − 1} do
3: for ⟨s,w[1∶l]⟩ ∈ Bt−1 do
4: if wl = </s> then
5: H.add(⟨s,w[1∶l]⟩)
6: continue
7: end if
8: for w ∈ V do
9: s← score(w[1∶l] ○ w)
10: H.add(⟨s,w[1∶l] ○ w⟩)
11: end for
12: end for
13: Bt ← ∅
14: while ∣Bt ∣ < k do
15: ⟨s,w[1∶l]⟩ ← H.max()
16: Bt.add(⟨s,w[1∶l]⟩)
17: H.remove(⟨s,w[1∶l]⟩)
18: end while
19: if ∀w[1∶l] ∈ Bt,wl = </s> then break
20: end if
21: end for
22: return Bt.max()

Implementing H as a Heap, operations
(add, remove,max) take O(log ∣V∣)

generate num_beams (k),
num_return_sequences

stopping condition is
early_stopping = True (also False,
never)

F. Yvon (ISIR) Text Generation Algorithms Aussois, April 2nd, 2025 13 / 45

Single pass decoding

Deterministic Algorithms for Text Generation
Flavors of Beam Search - Delivering k solutions [Kasai et al., 2024]

k: beam size, M: maximum length,
V: Vocabulary, score(⋅): scoring function.
1: B0 ← {⟨0,<s>⟩}
2: for t ∈ {1, . . . ,M − 1} do
3: for ⟨s,w[1∶l]⟩ ∈ Bt−1 do
4: if wl = </s> then
5: H.add(⟨s,w[1∶l]⟩)
6: continue
7: end if
8: for w ∈ V do
9: s← score(w[1∶l] ○ w)
10: H.add(⟨s,w[1∶l] ○ w⟩)
11: end for
12: end for
13: Bt ← ∅
14: while ∣Bt ∣ < k do
15: ⟨s,w[1∶l]⟩ ← H.max()
16: Bt.add(⟨s,w[1∶l]⟩)
17: H.remove(⟨s,w[1∶l]⟩)
18: end while
19: if ∀w[1∶l] ∈ Bt,wl = </s> then break
20: end if
21: end for
22: return Bt.max()

k: beam size, M: maximum length, p patience
V: Vocabulary, score(⋅): scoring function.
1: B0 ← {⟨0,<s>⟩}, F0 ← ∅
2: for t ∈ {1, . . . ,M − 1} do
3: H ← ∅, Ft ← Ft−1
4: for ⟨s,w[1∶l]⟩ ∈ Bt−1 do
5: for w ∈ V do
6: s← score(w[1∶l] ○ w),
7: H.add(⟨s,w[1∶l] ○ w⟩)
8: end for
9: end for
10: Bt ← ∅
11: while ∣Bt ∣ < k do
12: ⟨s,w[1∶l]⟩ ← H.max(),
13: if wl = </s> then
14: Ft.add(⟨s,w[1∶l]⟩)
15: else
16: Bt.add(⟨s,w[1∶l]⟩)
17: end if
18: H.remove(⟨s,w[1∶t]⟩)
19: end while
20: if ∣Ft ∣ = pk then break
21: end if
22: end for
23: return Ft.max()

F. Yvon (ISIR) Text Generation Algorithms Aussois, April 2nd, 2025 13 / 45

Single pass decoding

Pitfalls of Beam Search

Z From https://huggingface.co/blog/how-to-generate

Also [Holtzman et al., 2020]. This can make artificial text detection easy.
F. Yvon (ISIR) Text Generation Algorithms Aussois, April 2nd, 2025 14 / 45

https://huggingface.co/blog/how-to-generate

Single pass decoding

Pitfalls of Beam Search

The Beam Search “curse”

Russian–English (medium) Beam Size
10 50 75 100 150 1000

BLEU 24.9 23.8 23.6 23.3 22.5 3.7
METEOR 30.9 30.0 29.7 29.4 28.8 12.8
length 0.90 0.86 0.85 0.84 0.81 0.31

Results of the Russian–English translation system. We report BLEU and METEOR scores, as well as the ratio of
the length of generated sentences compared to the correct translations (length). From [Murray and Chiang,
2018]

Increasing beam width k hurts performance (!)

F. Yvon (ISIR) Text Generation Algorithms Aussois, April 2nd, 2025 14 / 45

Single pass decoding

Pitfalls of Beam Search

The Beam Search “curse”

Russian–English (medium) Beam Size
10 50 75 100 150 1000

BLEU 24.9 23.8 23.6 23.3 22.5 3.7
METEOR 30.9 30.0 29.7 29.4 28.8 12.8
length 0.90 0.86 0.85 0.84 0.81 0.31

Results of the Russian–English translation system. We report BLEU and METEOR scores, as well as the ratio of
the length of generated sentences compared to the correct translations (length). From [Murray and Chiang,
2018]

Increasing beam width k hurts performance (!)

Length issues in beam search
Increasing k raises the likeliness of inserting a complete hypothesis in Bt

Complete hypotheses scores do not change;

Incomplete hypotheses scores only gets worse

Short sequences are more likely than longer ones

The problem is the MAP not the beam [Eikema and Aziz, 2020] ! Small beams hide this issue

F. Yvon (ISIR) Text Generation Algorithms Aussois, April 2nd, 2025 14 / 45

Single pass decoding

Pitfalls of Beam Search

Better solutions with regularized decoding objectives [Meister et al., 2020a]

[w∗1 . . .w∗T∗] = argmin
T,w[1∶T]

T+1

∑
t=1
− logP(wt ∣w<t;θ) − λR([w[1∶T]])

R([w[1∶T]]) compensates for length differences, biases towards longer sequences

1 R([w[1∶T]]) = T + 1: fixed bonus for each extra word
∼ score with average surprisal 1

T+1 ∑
T
t=1 − logP(wt ∣w<t;θ)

2 Runif ([w[1∶T]]) = 1
T ∑t(logP(wt ∣w<t;θ) − µt)2, with µt average surprisal

enforces uniform information rate

3 Rlocal([w[1∶T]]) = 1
T+1 ∑t(logP(wt ∣w<t;θ) − logP(wt−1 ∣w<t−1;θ))2,

enforces locally uniform information rate

4 Rmax([w[1∶T]]) = 1
T+1 maxt(− logP(wt ∣w<t;θ)),

enables high surprisal tokens

generate with length_penalty=λ to control output length

F. Yvon (ISIR) Text Generation Algorithms Aussois, April 2nd, 2025 14 / 45

Single pass decoding

Pitfalls of Beam Search

Better solutions with regularized decoding objectives [Meister et al., 2020a]

[w∗1 . . .w∗T∗] = argmin
T,w[1∶T]

T+1

∑
t=1
− logP(wt ∣w<t;θ) − λR([w[1∶T]])

R([w[1∶T]]) compensates for length differences, biases towards longer sequences

1 R([w[1∶T]]) = T + 1: fixed bonus for each extra word
∼ score with average surprisal 1

T+1 ∑
T
t=1 − logP(wt ∣w<t;θ)

2 Runif ([w[1∶T]]) = 1
T ∑t(logP(wt ∣w<t;θ) − µt)2, with µt average surprisal

enforces uniform information rate

3 Rlocal([w[1∶T]]) = 1
T+1 ∑t(logP(wt ∣w<t;θ) − logP(wt−1 ∣w<t−1;θ))2,

enforces locally uniform information rate

4 Rmax([w[1∶T]]) = 1
T+1 maxt(− logP(wt ∣w<t;θ)),

enables high surprisal tokens

generate with length_penalty=λ to control output length

F. Yvon (ISIR) Text Generation Algorithms Aussois, April 2nd, 2025 14 / 45

Single pass decoding

Sampling Schemes for Text Generation

Ancestral sampling

w0 = <s>

∀t > 0,wt ∼ P(w ∣w<t;θ)

Recursion stops with </s> or when some maximum length Tmax is reached.

Ancestral sampling is non-deterministic: output varies, depending on the sharpness of P(w ∣w<t;θ)

Sampling requires generate do_sampling=True

softmax is very peaked: increase diversity with temperature τ to “flatten” the distribution with

exp
logit(w′,w<t;θ)

τ (τ is generate temperature)

better trade-off between likelihood and diversity [Keskar et al., 2019]:

P(w′ ∣w<t;θ) ∝ exp
logit(w′,w<t;θ)
τ × I(w′ ∈ w<t)

,

with I(w′ ∈ w<t) = 1 for “new tokens”, = λ > 1 for “old ones” (repetition_penalty for generate)

F. Yvon (ISIR) Text Generation Algorithms Aussois, April 2nd, 2025 15 / 45

Single pass decoding

Sampling Schemes for Text Generation

Top-k sampling [Fan et al., 2018]

w0 = <s>

Q(wt ∣w<t) ∝ {
P(wt ∣w<t;θ) if w ∈ top-k(P(W ∣w<t;θ))
0 otherwise

∀t > 0,wt ∼ Q(w ∣w<t)

Sample from a “truncated” distribution containing the k most likely symbols. Generation stops
with </s> or when some maximum time step Tmax is reached.

Finding the k most likely tokens is O(∣V∣ ∗ log k), the normalizer applies only over k elements.

- generate top_k

F. Yvon (ISIR) Text Generation Algorithms Aussois, April 2nd, 2025 15 / 45

Single pass decoding

Sampling Schemes for Text Generation

Nucleus sampling (top p, with variable p) [Holtzman et al., 2020]

w0 = <s>

Q(wt ∣w<t) ∝ {
P(wt ∣w<t;θ) if w ∈ top-p(P(W ∣w<t;θ))

0 otherwise

∀t > 0,wt ∼ Q(w ∣w<t)

p is the smallest integer such that ∑w∈top-p P(w ∣w<t; ;θ) > α. Sample from a “truncated”
distribution for the p most likely symbols, with variable p (α typically ∈ [0.7;0.9]).

α controls the size of the truncated vocabulary (Q(w ∣w<t) > 0).

- generate top_p

F. Yvon (ISIR) Text Generation Algorithms Aussois, April 2nd, 2025 15 / 45

Single pass decoding

Sampling Schemes for Text Generation

Locally Typical Sampling [Meister et al., 2023]

w0 = <s>

Q(wt ∣w<t) ∝ {
P(wt ∣w<t;θ) if w ∈ LTStop-p(P(W ∣w<t;θ))

0 otherwise

∀t > 0,wt ∼ Q(w ∣w<t)

LTStop-p(P(W ∣w<t;θ)) minimize ∑∣H(W∣w<t;θ) + logP(w ∣w<t;θ)∣ subject to
∑w∈LTStop-p P(w ∣w<t;θ) > α. Sample from a “truncated” distribution for the p most locally
typical symbols, with variable p (α typically ∈ [0.7;0.9]).

Locally typical prefers tokens with near average surprisal

In low uncertainty contexts, prefer high probability tokens

In high uncertainty contexts, pick token with near average surprisal (=information content)

generate: typical_p

related: Mirostat [Basu et al., 2021], sample with a target perplexity.

F. Yvon (ISIR) Text Generation Algorithms Aussois, April 2nd, 2025 15 / 45

Single pass decoding

Sampling Schemes for Text Generation

Top-k, top-p and typical sample from a truncated distribution Q(W ∣ <t;θ):
∀t, select vocabulary V+t ⊂ V.

∀t,w /∈ V+t ,Q(w ∣ <t;θ) = 0

Always sampling high probability words avoids derailing, yet, can be very risky:
1 generation may no longer terminate⇒ probability leakage to infinite strings.

2 may exclude interesting words
Using top-p, for p = 0.9, P(Duck ∣Donald) = 0.95 may exclude w =Trump

3 may include unlikely words
Using top-k, k = 20 may generate unlikely continuations for low-entropy distributions

F. Yvon (ISIR) Text Generation Algorithms Aussois, April 2nd, 2025 15 / 45

Single pass decoding

Sampling Schemes for Text Generation
Top-k, top-p and typical sample from a truncated distribution Q(W ∣ <t;θ):

∀t, select vocabulary V+t ⊂ V.

∀t,w /∈ V+t ,Q(w ∣ <t;θ) = 0

Always sampling high probability words avoids derailing, yet, can be very risky:
1 generation may no longer terminate⇒ probability leakage to infinite strings.

2 may exclude interesting words
Using top-p, for p = 0.9, P(Duck ∣Donald) = 0.95 may exclude w =Trump

3 may include unlikely words
Using top-k, k = 20 may generate unlikely continuations for low-entropy distributions

Remedies

solve (1) with consistent truncated sampling [Welleck et al., 2020a]: V+t → V+t ∪ {</s>}

how to mitigate (2) and (3) ? what is the right size for V+t ?

(P1) never truncate high probability words⇔ keep all w such that P(w ∣w<t;θ) > ϵ;
(P2) truncate more when entropy is low; truncate less when entropy is high

(P∗) sample only w for which the true P(w ∣ <t;θ) is provably > 0 (with rejection sampling)
[Finlayson et al., 2024]

F. Yvon (ISIR) Text Generation Algorithms Aussois, April 2nd, 2025 15 / 45

Single pass decoding

Sampling Schemes for Text Generation

η-Sampling [Hewitt et al., 2022]

w0 = <s>

Q(wt ∣w<t) ∝ {
P(wt ∣w<t;θ) if w ∈ V+t

0 otherwise

∀t > 0,wt ∼ Q(w ∣w<t)
V+t = {w ∈ V∣P(w ∣w<t;θ) ≥min(ϵ, α exp−H(Wt∣w<t;θ)}

Sample from a “truncated” distribution subject to principles (P1) and (P2).

α exp−H(Wt ∣w<t;θ) increases the sampling set when entropy is high

Yields better samples than typical, greedy, ancestral, nucleus and top-k

In [Hewitt et al., 2022]’s experiments, ϵ = 0.0003, α = √ϵ

- generate epsilon_cutoff, eta_cutoff

F. Yvon (ISIR) Text Generation Algorithms Aussois, April 2nd, 2025 15 / 45

Single pass decoding

Consistent Decoding for Consistent Models
Why we need a maximum decoding length

Consistent model (details in [Welleck et al., 2020a])

A consistent model is such that P(∣w[1∶T]∣ = ∞ ∣θ) = 0

A sufficient condition is that hidden states are uniformely bounded.
This implies that ∃ξ,∀, t,w<t,P(</s> ∣w<t;θ) > ξ

P(∣w[1∶T]∣ = T ∣θ) < (1 − ξ)T

lim
T→∞

(1 − ξ)T = 0

F. Yvon (ISIR) Text Generation Algorithms Aussois, April 2nd, 2025 16 / 45

Single pass decoding

Consistent Decoding for Consistent Models
Why we need a maximum decoding length

Consistent decoding algorithm

A consistent decoding algorithm generates a complete text with probability 1.

Inconsistency of decoding

Ancestral is consistent, greedy, beam, top-k, nucleus, typical, etc. are not consistent.
Argument: no guarantee that </s> will ever appear in the top-k, top-p, etc.

Consistent Decoding for Deterministic Search

w0 = <s>

Q(wt ∣w<t;θ) ∝
⎧⎪⎪⎨⎪⎪⎩

1 − α(ht) if w = </s>
α(ht) exp logit(w,w<t;θ)
∑w′ exp logit(w′,w<t;θ) otherwise

α(h0) = σ(logit(</s>,<s>;θ)) (1)

α(ht) = σ(logit(</s>,w<t;θ))(1 −P(</s> ∣w<t;θ)) (2)

With σ ∶ R→ [0;1 − ϵ], ϵ > 0, ϵ < 1. This ensures that Q(</s> ∣w<t;θ) is monotonically increasing, meaning
that </s> eventually happen.

F. Yvon (ISIR) Text Generation Algorithms Aussois, April 2nd, 2025 16 / 45

Diversity

Promoting Diversity in Text Generation

Diversity promotion has many forms

1 boosting surprisal in open-ended text generation

2 ensuring diversity in a set of solutions

3 mitigating repetition in texts (difficult - repetition can be a good thing)

F. Yvon (ISIR) Text Generation Algorithms Aussois, April 2nd, 2025 17 / 45

Diversity

Promoting Diversity in Text Generation
Boosting surprisal in open-ended text generation

Contrasting Expert and Amateur Models

New search objective:

w∗1 . . .w∗T∗ = argmax
T,w[1∶T]

T
∑
t=1

logP(wt ∣w<t;θ) − logP(wt ∣w<t;θAMA)

subject to∀t,w∗t ∈ V+t
V+t = {w ∈ V∣P(w ∣w<t;θ) ≥ αmax

w′
P(w′ ∣w<t;θ)}

Select probable words that are unlikely for a weaker amateur model.
Constraining the search to high probability words helps handle cases
where (a) Expert and Amateur agree on very low probability; (b) Expert
and Amateur agree on very high probability. Also respects (P1).

From [Li et al., 2023]

requires consistent tokenization for expert and amateur

see also: https://arxiv.org/pdf/2305.12675.pdf

F. Yvon (ISIR) Text Generation Algorithms Aussois, April 2nd, 2025 17 / 45

https://arxiv.org/pdf/2305.12675.pdf

Diversity

Promoting Diversity in Text Generation
Generating Multiple Diverse Solutions

Ensuring Diversity in Beam Search

Maintains G beams B1
t . . .BG

t , such that hypotheses in Beam g must be diverse with respect to
B1

t . . .B
g−1
t

score(w[1∶l], g) = score(w[1∶l]) if g = 1

= score(w[1∶l]) + λ
g−1

∑
h=1

∆(w[1∶l],Bh
t), otherwise

∆(w[1∶l],Bh
t) = ∑

w′
[1∶l′]

∈Bh
t

δ(w[1∶l],w′[1∶l′]),with δ a similarity function

∆ can be any string comparison (set differences for bag-of-words or bag-of-ngrams; Levenshtein distance;
neural similarity, etc.)

beams can run in parallel with a time delay

generate: num_beam_groups (G), diversity_penalty (λ)

F. Yvon (ISIR) Text Generation Algorithms Aussois, April 2nd, 2025 17 / 45

Diversity

Promoting Diversity in Text Generation
Avoiding Repetitions

Contrastive Search (greedy version) [Su et al., 2022]

w0 = <s>

∀t > 0,wt = argmax
w∈V̄

(1 − α) logP(w ∣w<t) − αmax{sim(hw,hws) ∶ 1 ≤ s ≤ t − 1}

hw is the latent representation associated to w; sim is a similarity function (e.g. cosine). Extra
penalty term for repetitions. Generation stops with </s> or when some maximum length Tmax is
reached.

assumes repetitions can be detected in embedding space

generate: penalty_alpha= α Z https://huggingface.co/blog/introducing-csearch

naive version with no_repeat_ngram_size: disable n-gram repetition

DoLa contrasts inner vs. outer layers to increase factuality [Chuang et al., 2024]

F. Yvon (ISIR) Text Generation Algorithms Aussois, April 2nd, 2025 17 / 45

https://huggingface.co/blog/introducing-csearch

Diversity

Combining Beam-Search and Sampling

k: beam size, M: maximum length,
V: Vocabulary, score(⋅): scoring function.
1: B0 ← {⟨0,<s>⟩}
2: for t ∈ {1, . . . ,M − 1} do
3: for ⟨s,w[1∶l]⟩ ∈ Bt−1 do
4: if wl = </s> then
5: H.add(⟨s,w[1∶l]⟩)
6: continue
7: end if
8: for i ∈ range(k) do
9: < logp,w >∼ P(W ∣w[1∶l];θ)
10: H.add(⟨s + logp,w[1∶l] ○ w⟩)
11: end for
12: end for
13: Bt ← ∅
14: while ∣Bt ∣ < k do
15: ⟨s,w[1∶l]⟩ ← H.max()
16: Bt.add(⟨s,w[1∶l]⟩)
17: H.remove(⟨s,w[1∶l]⟩)
18: end while
19: if ∀w[1∶l] ∈ Bt,wl = </s> then break
20: end if
21: end for
22: return Bt.max()

licences do_sampling=True and
num_beams > 0 !

the Heap H never contains more than k2

entries

sampling on line 9 can implement any
sampling scheme (top-k, top-p, etc)

alt take 1: sample from Ht ∝ local scores
(line 15)

alt take 2: Kool et al.
[2019-06-09/2019-06-15]

F. Yvon (ISIR) Text Generation Algorithms Aussois, April 2nd, 2025 18 / 45

Advanced topics Fast Generation with Speculative sampling

Faster Generation with Speculative Sampling
Details in [Leviathan et al., 2023] and [Chen et al., 2023]

Overview

Sampling algorithms are autoregressive: they return one sample at each timestep.

At step t speculative sampling uses a simpler model to generate S draft tokens wt+1 . . .wt+S
autoregressively, then “validates” the tokens with the large model in parallel with accept /
reject procedure.

Why? Potential to validate multiple tokens in one parallel forward pass.

Figure from Leviathan et al. [2023], K > 4

generate: assistant_model (assistant_tokenizer)

F. Yvon (ISIR) Text Generation Algorithms Aussois, April 2nd, 2025 19 / 45

Advanced topics Fast Generation with Speculative sampling

Faster Generation with Speculative Sampling
Details in [Leviathan et al., 2023] and [Chen et al., 2023]

1: sample K drafts [wt+i, q(wt+i)], i = 1 . . .K
2: evaluate drafts [wt+i, p(wt+i)]
3: sample ui ∼ Unif[0 ∶ 1], i = 1 . . .K
4: accept← True ; i← 1
5: while accept and i ≤ K do
6: if q(wt+i) < p(wt+i) then
7: i← i + 1 ▷ accept
8: else if ui < q(wt+i)

p(wt+i)
then

9: i← i + 1 ▷ accept
10: else
11: accept← False ▷ reject
12: ∀w, r(w) ∝ (max(0, p(w) − q(w)))
13: sample wt+i ∼ r(w)
14: end if
15: end while

Notations:

p(w) = P(W ∣w<t;θ),
q(w) = Q(W ∣w<t;θ

′)
V+ = {w∣q(w) > p(w)}
oversampled tokens

V− = {w∣q(w) ≤ p(w)};
undersampled tokens

Claim: speculative sampling generates
tokens under p(w)

1 w ∈ V+? accept with proba p(w)
q(w) ⇒ p′(w) = q(w) × p(w)

q(w) = p(w)
2 w ∈ V−? p′(w) = q(w) always accept and there is a second chance:

p′(w)+ = ∑
v∈V+

q(v) × (1 − p(v)
q(v)

) × (p(w) − q(w)
∑w′∈V− p(w′) − q(w′)

) = p(w) − q(w)

F. Yvon (ISIR) Text Generation Algorithms Aussois, April 2nd, 2025 19 / 45

Part III

Constrained Generation

F. Yvon (ISIR) Text Generation Algorithms Aussois, April 2nd, 2025 20 / 45

Constraining Text Generation

Generating with simple constraints

length constraints (soft and hard) – for beam search

no repetition (soft and hard penalties)

with in-text / cross-text diversity (soft and hard penalties)

A smorgasbord of additional constraints

lexical / terminological choices (positive and negative, hard and soft) [Keskar et al., 2019]

language, idiom, sociolect (hard)

style, consistency, toxicity, polarity, stance, etc (soft)

optimizing other global scores: alignment score, backward model (translation); coverage
score (summarization), etc.

Updated search goals: restricted search space (hard), new search objective (soft)

F. Yvon (ISIR) Text Generation Algorithms Aussois, April 2nd, 2025 21 / 45

Constraining Text Generation

Generating with simple constraints

length constraints (soft and hard) – for beam search

no repetition (soft and hard penalties)

with in-text / cross-text diversity (soft and hard penalties)

A smorgasbord of additional constraints

lexical / terminological choices (positive and negative, hard and soft) [Keskar et al., 2019]

language, idiom, sociolect (hard)

style, consistency, toxicity, polarity, stance, etc (soft)

optimizing other global scores: alignment score, backward model (translation); coverage
score (summarization), etc.

Updated search goals: restricted search space (hard), new search objective (soft)

F. Yvon (ISIR) Text Generation Algorithms Aussois, April 2nd, 2025 21 / 45

Guiding Decoding with Soft Constraints

Soft constraints

A soft or probabilistic constraint for text w[1∶T] is a model P(A ∣w[1∶T],C;λ), where A is a
(binary) discrete attribute representing the constraint.

For instance: A = 1 for harmfull / toxic texts, 0 for harmless content;

Probabilistic constraints can be learned from supervision:

“generatively” with P(w[1∶T] ∣a,C;λ)∀a: learns / adapt multiple LMs - potentially costly

“discriminatively” with P(A ∣w[1∶T],C;λ): LM + classification head

Generative to discriminative score use Bayes rule

P(A ∣w[1∶T],C;λ) ∝ P(A)P(w[1∶T] ∣A,C;λ)

F. Yvon (ISIR) Text Generation Algorithms Aussois, April 2nd, 2025 22 / 45

Guiding Decoding with Soft Constraints

Soft constraints

A soft or probabilistic constraint for text w[1∶T] is a model P(A ∣w[1∶T],C;λ), where A is a
(binary) discrete attribute representing the constraint.

For instance: A = 1 for harmfull / toxic texts, 0 for harmless content;

Decoding with constraints

A LM computes P(w[1∶T] ∣θ), how to generate w[1∶T] that simultaneously

is likely fluent: high logP(w[1∶T] ∣C;θ)
likely satisfies constraint: high logP(A ∣w[1∶T],C;λ) ?

one requirement is based on the LM prior, one on the class posterior

F. Yvon (ISIR) Text Generation Algorithms Aussois, April 2nd, 2025 22 / 45

Guiding Decoding with Soft Constraints

Soft constraints

A soft or probabilistic constraint for text w[1∶T] is a model P(A ∣w[1∶T],C;λ), where A is a
(binary) discrete attribute representing the constraint.

For instance: A = 1 for harmfull / toxic texts, 0 for harmless content;

Training-based methods

fine-tuning, VAEs, GAN – all these methods requires retraining a model

[Ctrl], a class-conditional models (with class tokens) [Keskar et al., 2019].
Learns θ with [ctrl:]w1 . . .wT , a model for P(w[1∶T] ∣ [ctrl:]; θ)

[ctrl:] is generic - represent style or domain or language or even length.
Require a finite set of predefined control codes for training

GeDi [Krause et al., 2021] trains [ctrl] with {a, ā} and guide generation with Bayes rule

P(A = a ∣w[1∶T];λ) =
P(a)∏t P(wt ∣w<t,a;λ)

∑a′ P(a′)∏t P(wt ∣w<t,a′;λ)

Soft constraint A is promoted in decoding with P(w ∣w<t;θ)P(a ∣w[1∶t−1]w;θ′)α

The trick is to compute P(wt ∣w<t,A;θ) in parallel for a, ā

F. Yvon (ISIR) Text Generation Algorithms Aussois, April 2nd, 2025 22 / 45

Generating with Hard Rational Constraints

Multiple types of Hard Constraints

1 watch your language bad_words_ids

2 force words in output (e.g., QA, MT with term constraints): force_words_ids

3 question answering with fixed choices

4 structured answers (e.g. JSON records or csv tables)

5 code generation

F. Yvon (ISIR) Text Generation Algorithms Aussois, April 2nd, 2025 23 / 45

Generating with Hard Rational Constraints

Rational Languages

Rational languages are languages represented by Rational Expressions (a.k.a RegExps), are also
languages represented by (Deterministic) Finite Automata (DFAs).

3

1
a

b

2 4

b

d

a

Accomodate finite lists of words and sequences, numerics, http / mail addresses, etc

F. Yvon (ISIR) Text Generation Algorithms Aussois, April 2nd, 2025 23 / 45

Generating with Hard Rational Constraints

Implementing Rational Constraints

Requirements:

1 Transitions mapping (states, words) to next states.

restrict choice to valid continuations
apply transition; update state

2 List of final states: add </s> to valid word list

Caveats

1 increase complexity (one search / state)

2 words are not tokens

3 compatible with beam?

4 generalizes to simple (deterministic) CF grammars

Check it out - with outlines library: https://github.com/dottxt-ai/outlines

F. Yvon (ISIR) Text Generation Algorithms Aussois, April 2nd, 2025 23 / 45

https://github.com/dottxt-ai/outlines

Part IV

Meta-Generation Strategies

F. Yvon (ISIR) Text Generation Algorithms Aussois, April 2nd, 2025 24 / 45

Meta-generation techniques

Motivations

complex constraints in generation

generation of long, structured output:
justifications, “reasonning” steps, code, etc

Adavanced Search Strategies

1 parallel search (combines multiple complete generations)

reranking (pick one out-of-N)
transform (build a new one out-of-N)

2 heuristic tree search (MCTS, A∗)

3 refinement, local search, self-critics, self-improvement, etc

+ Hybrid strategies: eg., N tree-search, then aggregate, etc.

F. Yvon (ISIR) Text Generation Algorithms Aussois, April 2nd, 2025 25 / 45

Meta-generation techniques

Unifiying terms

context S ≡ input prompt (+ critics / refinements) C

search states S ≡ generated prefix, can be complete or incomplete

basic action ≡ generation of one token w

policy vπθ (S) = w means w = argmaxP(W ∣S;θ) or w ∼ P(W ∣S;θ)

final / output reward R(S,C), for S complete state.

R(S) boolean: grammaticality test, hard constraint, provable solution
R(S) scalar: soft constraint
R(S) approximated or learned with confidence estimation⇒ R̂(S,C)

a.k.a verifier model

state value vπ(S) =≡ Ew[1∶T]∼P(∣ S;θ)(R(S⊕w[1∶T],C)), can be estimated v̂πϕ(S) or learned
vπϕ(S)

intermediary steps decompose [w[1∶T]] as [w[1∶T1] . . .w[1∶TK−1]w[1∶TK]]. w[1∶TK] is the final
output.

intermediary steps can be scored too !

F. Yvon (ISIR) Text Generation Algorithms Aussois, April 2nd, 2025 25 / 45

Illustration: Beam Search with Self-Evaluation
Problem statement: improved search for mathematical “reasoning”

.

Q

Q

Ɛ𝜆(s
1:t

1)

Ɛ𝜆(s
1:t

2)

…
Ɛ𝜆(s

1:t
n-1)

Ɛ𝜆(s
1:t
n)

Ɛ𝜆(s
1:t
n+1)

…

Ɛ𝜆(s
1:t

2n-1)

Ɛ𝜆(s
1:t

2n)

s1 s2 s3 … st-1

s1 s2 s3 … st-1
Kept Candidate 2

st2n-1

st1

st2

…

stn-1

stn+1

…

st2n

stn

Kept Candidate 1

s1 s2 … sT
R = [s1, s2, …, sT] = s1:T

Q …

…
…

…
…

…

…

Timestep 1 Timestep 2 Timestep T

s1
1

s1
2

s1
3

s1
n

s1
n-1

s2
1

s2
2

s2
n

s2
n+1

s2
n+2

s2
2n

sT1

sTn

sTn+1

sTn+2

sT2n

sT2

Multi-step
Reasoning (k=2)

Decoding at Timestep t

a

Self-Eval

Gen
Gen

Select k Paths

Reasoning Chain

Predicted Final Answer

Stochastic Beam Search

Gen

Self-Eval
🤖
LLM

from [Xie et al., 2023]

Changes to standard beam search
1 generate n complete steps for each of k states in beam Bl−1

2 evaluate y[1∶Tl] ∶ G(y[1∶Tl]∣[y[1∶T1] . . . y[1∶Tl−1]) with auxiliary model (nk times)

3 sample k best steps in Bl−1 according to:

Eλ(S) = logP([y[1∶T1] . . . y[1∶Tl] ∣C;θ) + G(y[1∶Tl]∣[y[1∶T1] . . . y[1∶Tl−1])
λ

F. Yvon (ISIR) Text Generation Algorithms Aussois, April 2nd, 2025 26 / 45

Parallel Search

Reranking 101
Picking one out-of-M

Reranking as Meta Generation
1 generate M complete solutionsWS = {[w[1∶T]](m),m = 1 . . .M}

e.g., based on logP([w[1∶T]] ∣C;θ)
2 evaluate [w[1∶T]](m) with output reward R([w[1∶T]],C′,θ′)
3 return [w[1∶T]]∗ = argminm R([w[1∶T]](m),C′,θ′)

F. Yvon (ISIR) Text Generation Algorithms Aussois, April 2nd, 2025 27 / 45

Parallel Search

Reranking 101
Picking one out-of-M

Reranking as Meta Generation
1 generate M complete solutionsWS = {[w[1∶T]](m),m = 1 . . .M}

e.g., based on logP([w[1∶T]] ∣C;θ)
2 evaluate [w[1∶T]](m) with output reward R([w[1∶T]],C′,θ′)
3 return [w[1∶T]]∗ = argminm R([w[1∶T]](m),C′,θ′)

Design of generate (for M): (diverse) beam-search ? (diverse) sampling ? stochastic beam
search ? Multiple models and checkpoints ? Multiple prompts? Impact of M?

num_return_sequences

Design of evaluate: length control; score of a larger or better model (θ′); increased context
(C’); use auxiliary models of grammaticality, style, toxicity, stance, polarity; use result of
execution (code); also watermarking; privacy; etc.

F. Yvon (ISIR) Text Generation Algorithms Aussois, April 2nd, 2025 27 / 45

Parallel Search

Reranking 101
Picking one out-of-N

Voting as Meta Generation
1 generate M solutionsWS = {[w(m)][1∶T],m = 1 . . .M} based on model logP([wm][1∶T] ∣C;θ)
2 evaluate [w(m)][1∶T] with output reward R([w[1∶T]],C′,θ′)
3 Voting procedures:

1 return [w∗[1∶T]] = argmax[w[1∶T]]∑m I([w[1∶T]](m) = [w[1∶T]]) (simple vote)

2 return [w∗[1∶T]] = argmax[w[1∶T]]∑m λmI([w[1∶T]](m) = [w[1∶T]])

with λm ∝ R([w[1∶T]](m) (weighted vote)

F. Yvon (ISIR) Text Generation Algorithms Aussois, April 2nd, 2025 27 / 45

Parallel Search

Reranking 101
Picking one out-of-N

Voting as Meta Generation
1 generate M solutionsWS = {[w(m)][1∶T],m = 1 . . .M} based on model logP([wm][1∶T] ∣C;θ)
2 evaluate [w(m)][1∶T] with output reward R([w[1∶T]],C′,θ′)
3 Voting procedures:

1 return [w∗[1∶T]] = argmax[w[1∶T]]∑m I([w[1∶T]](m) = [w[1∶T]]) (simple vote)

2 return [w∗[1∶T]] = argmax[w[1∶T]]∑m λmI([w[1∶T]](m) = [w[1∶T]])

with λm ∝ R([w[1∶T]](m) (weighted vote)

Design of generate (for M): (diverse) beam-search ? (diverse) sampling ? stochastic beam
search ? Multiple models and checkpoints ? Multiple prompts? Impact of M?

num_return_sequences

Design of evaluate: length control; score of a larger or better model (θ′); increased context
(C’); use auxiliary models of grammaticality, style, toxicity, stance, polarity; use result of
execution (code); also watermarking; privacy; etc.

Main compute tradeoff: M vs. cost of one generation

F. Yvon (ISIR) Text Generation Algorithms Aussois, April 2nd, 2025 27 / 45

Parallel Search

Reranking 101
Picking one out-of-N

Voting as Meta Generation
1 generate M solutionsWS = {[w(m)][1∶T],m = 1 . . .M} based on model logP([wm][1∶T] ∣C;θ)
2 evaluate [w(m)][1∶T] with output reward R([w[1∶T]],C′,θ′)
3 Voting procedures:

1 return [w∗[1∶T]] = argmax[w[1∶T]]∑m I([w[1∶T]](m) = [w[1∶T]]) (simple vote)

2 return [w∗[1∶T]] = argmax[w[1∶T]]∑m λmI([w[1∶T]](m) = [w[1∶T]])

with λm ∝ R([w[1∶T]](m) (weighted vote)

for R([w[1∶T]],C′,θ′) binary, recovers the hard constraint case – akin to rejection sampling

for [w[1∶T]] = [w[1∶Tr] ⊕w[1∶Ta]] comprising “reasoning” and answer part, returning
[w∗[1∶T]] = argmax[w[1∶T]]∑m I([w[1∶Ta]](m) = [w[1∶T]])
is self-consistency, marginalizes over “reasoning” steps.

F. Yvon (ISIR) Text Generation Algorithms Aussois, April 2nd, 2025 27 / 45

Parallel Search

Minimum Bayes Risk Decoding
Context and Concepts

ℓ([w[1∶T]], [v[1∶S]]) ∶ (<s>V∗</s>) × (<s>V∗</s>) → R+ a global dissimilarity function

ℓ(x, y) small when x and y are “similar”

ℓ([w[1∶T]], [v[1∶S]]) = 1 − I([w[1∶T]] = [v[1∶S]])
one-hot dissimilarity, all (non identical) pairs of sequences have ℓ = 1

ℓ([w[1∶T], v[1∶S]]) = 1 −NED([w[1∶T]], [v[1∶S]])
normalized edit distance, normalized minimum number of edits from w[1∶T] to v[1∶S]

ℓ([w[1∶T]], [v[1∶S]]) = 1 −BLEU([w[1∶T]], [v[1∶S]])
reference based metrics - n-gram overlap (BLEU, METEOR for MT, Rouge for summarization)

ℓ([w[1∶T]], [v[1∶S]]) = − cos(Emb([w[1∶T]]),Emb([v[1∶S]])):
cosine dissimilarity in embedding space, generalize to neural metrics (BLEURT, BertScore, COMET)
[Suzgun et al., 2023]

F. Yvon (ISIR) Text Generation Algorithms Aussois, April 2nd, 2025 28 / 45

Parallel Search

Minimum Bayes Risk Decoding
Main idea

For fixed [w[1∶t]], the risk of [w[1∶T]]

R([w[1∶T]]) = ES,[v[1∶S]]∼P(ℓ([w[1∶T]], [v[1∶S])])

= ∑
[v[1∶S]]

P(v[1∶S])ℓ([w[1∶T]], [v[1∶S]])

Minimum Bayes Risk decoding seeks

[w∗[1∶T∗]] = argmin
T,[w[1∶T]]

R([w[1∶T]])

= argmin
T,[w[1∶T]]

ES,[v[1∶S]]∼P(ℓ([w[1∶T]], [v[1∶S]]))

= argmin
T,[w[1∶T]]

∑
S,[v[1∶S]]

P(v[1∶S])ℓ([w[1∶T]], [v[1∶S]])

The optimal sequence is (on average) the closest to all other sequences

F. Yvon (ISIR) Text Generation Algorithms Aussois, April 2nd, 2025 28 / 45

Parallel Search

Minimum Bayes Risk Decoding
Intuition: why is MBR is a good idea ?

F. Yvon (ISIR) Text Generation Algorithms Aussois, April 2nd, 2025 28 / 45

Parallel Search

Minimum Bayes Risk Decoding
Intuition: why is MBR is a good idea ?

0- the mode (argmaxP([w[1∶T]] ∣θ)) may be anomalous and risky [Eikema and Aziz,
2020]

1- If likely solutions (high P([w[1∶T]] ∣θ)) have a good quality, being close to many good
solutions ([w∗[1∶T]]) is also likely to have a good quality [smoothness of search space]

2- For the one-hot dissimilarity: ℓ([w[1∶T]], [v[1∶S]]) = 1 − I([w[1∶T]] = [v[1∶S]]),

ES,[v[1∶S]]∼P(ℓ([w[1∶T]], [v[1∶S]])) = ∑
[v[1∶S]]≠[w[1∶T]]

P([v[1∶S]] ∣θ)

=1 −P([w[1∶T]] ∣θ)

Minimizing the risk maximizes the model probability: back to MAP !

3- The MAP maximizes a proxy quality score P(w[1∶t] ∣θ), MBR directly optimizes the true
metric ℓ() instead

See also the motivations of Bertsch et al. [2023].

F. Yvon (ISIR) Text Generation Algorithms Aussois, April 2nd, 2025 28 / 45

Parallel Search

Minimum Bayes Risk Decoding
Theory and Practice of MBR

Two sources of intractability

[w∗[1∶T]] = argmin
T,[w[1∶T]]

∑
S,[v[1∶S]]

P([v[1∶s]])ℓ([w[1∶T]], [v[1∶S]])

1 argminT,[w[1∶T]]: argmin in a very very large set

2 ES,v[1∶S]∼P() = ∑S,[v[1∶S]]: ∑ over many many terms

Two practical remedies

1 argmin in a very very large set⇒ restrict search toWs

2 ∑ over many many terms⇒ replace E() by Monte-Carlo approximation of size ∣WMC ∣

[w∗[1∶t]] = argmin
T,[w[1∶T]]∈Ws

∑
[v[1∶S]]∈WMC

ℓ([w[1∶T]], [v[1∶S]])

F. Yvon (ISIR) Text Generation Algorithms Aussois, April 2nd, 2025 28 / 45

Parallel Search

Minimum Bayes Risk Decoding
Theory and Practice of MBR

Two sources of intractability

[w∗[1∶T]] = argmin
T,[w[1∶T]]

∑
S,[v[1∶S]]

P([v[1∶s]])ℓ([w[1∶T]], [v[1∶S]])

1 argminT,[w[1∶T]]: argmin in a very very large set

2 ES,v[1∶S]∼P() = ∑S,[v[1∶S]]: ∑ over many many terms

Two practical remedies

1 argmin in a very very large set⇒ restrict search toWs

2 ∑ over many many terms⇒ replace E() by Monte-Carlo approximation of size ∣WMC ∣

[w∗[1∶t]] = argmin
T,[w[1∶T]]∈Ws

∑
[v[1∶S]]∈WMC

ℓ([w[1∶T]], [v[1∶S]])

F. Yvon (ISIR) Text Generation Algorithms Aussois, April 2nd, 2025 28 / 45

Parallel Search

Minimum Bayes Risk Decoding
MBR: a meta-generation algorithm

ℓ(): Dissimilarity ℓ, model P(W ∣C;θ)
1: WMC ← generate(P(∣C;θ),N, . . .)
2: WS ← generate(P(∣C;θ),M, . . .)
3: mins← +∞
4: for [w[1∶T]] ∈ WS do
5: s← 0, mbr← <s></s>
6: for [v[1∶S]] ∈ WMC do
7: s← s + ℓ([w[1∶T]], [v[1∶S]])
8: end for
9: if s < mins then

10: mins← s, mbr← [w[1∶T]]
11: end if
12: end for
13: return(mins,mbr)

generate 1: is for MC estimates:
prefer sampling with replacement,
unbiased (ancestral)

generate 2: is to identify promising
solutions: prefer beam-seach, if
possible diverse

Alternative forWS: reuseWMC ⇒
back to reranking

Alternative forWS: use multiple
models, multiple checkpoints,
multiple prompts, etc.

Run-time is sampling time + O(MN);
larger N yields better MC estimates;
larger M yields better exploration

F. Yvon (ISIR) Text Generation Algorithms Aussois, April 2nd, 2025 28 / 45

Parallel Search

Minimum Bayes Risk Decoding
MBR: a meta-generation algorithm

ℓ(): Dissimilarity ℓ, model P(W ∣C;θ)
1: WMC ← generate(P(∣C;θ),N, . . .)
2: WS ← generate(P(∣C;θ),M, . . .)
3: mins← +∞
4: for [w[1∶T]] ∈ WS do
5: s← 0, mbr← <s></s>
6: for [v[1∶S]] ∈ WMC do
7: s← s + ℓ([w[1∶T]], [v[1∶S]])
8: end for
9: if s < mins then

10: mins← s, mbr← [w[1∶T]]
11: end if
12: end for
13: return(mins,mbr)

generate 1: is for MC estimates:
prefer sampling with replacement,
unbiased (ancestral)

generate 2: is to identify promising
solutions: prefer beam-seach, if
possible diverse

Alternative forWS: reuseWMC ⇒
back to reranking

Alternative forWS: use multiple
models, multiple checkpoints,
multiple prompts, etc.

Run-time is sampling time + O(MN);
larger N yields better MC estimates;
larger M yields better exploration

F. Yvon (ISIR) Text Generation Algorithms Aussois, April 2nd, 2025 28 / 45

Heuristic token-level and step-level search

Better Searching for Good Solutions with MCTS
Monte-Carlo Tree Search [Kocsis and Szepesvári, 2006]

The problem with output reward R([w[1∶T]],C)

searching with P([w[1∶T]] ∣C;θ) may yield poor / unappropriate solutions

ensemble-based methods (best-out-of-N, MBR) require multiple inferences, no garantee of
improvement

MCTS delivers solutions with a high output reward, based on a estimates of R([w[1∶T]],C)
for partial sequences [w[1∶t].

F. Yvon (ISIR) Text Generation Algorithms Aussois, April 2nd, 2025 29 / 45

Heuristic token-level and step-level search

Better Searching for Good Solutions with MCTS
Monte-Carlo Tree Search [Kocsis and Szepesvári, 2006]

Concept and Terminology (adapted from RL / POMDP)

state: St ⇔ context + current prefix C, [w[1∶t]; S is the set of states (prefixes).
States can be complete (wt = </s>) or incomplete.

actions: pick next possible token wt+1 ∈ V
using action w in state St: yields new state St ⊕w ≡ w[1∶t+1] = w[1∶t]w

policy πθ: St → V; next action selection rule. For instance:

πθ(St) = argmaxw P(w ∣ St;θ): greedy policy (deterministic)
πθ(St) = w ∼ P(w ∣ St;θ): sampling policy (non-deterministic) - also top-k, top-p etc.

value (of a state, given policy): vπ ∶ S → R; vπ(St) estimates the best score F() attainable
from St.

Use state values to obtain MC samples of local subtrees that guide the generation policy
towards leaf nodes with large scores.

F. Yvon (ISIR) Text Generation Algorithms Aussois, April 2nd, 2025 29 / 45

Heuristic token-level and step-level search

Better Searching for Good Solutions with MCTS
Monte-Carlo Tree Search [Kocsis and Szepesvári, 2006]

Generating one token with MCTS
F. Yvon (ISIR) Text Generation Algorithms Aussois, April 2nd, 2025 29 / 45

Heuristic token-level and step-level search

Better Searching for Good Solutions with MCTS
Monte-Carlo Tree Search [Kocsis and Szepesvári, 2006]

1: procedure MCTS(K ∶ int)
2: S← S0(≡C,<s>)
3: while ! complete(S) do
4: for K iterations do
5: MCTS-Explore(S)
6: end for
7: w∗ ← argmaxw∈V cnt(S⊕w)
8: S← S⊕w∗

9: end while
10: return S
11: end procedure

1: procedure PUCT-SCORE(S,w)
2: U ← Q(S⊕w)
3: U ← U + cpuct P(w ∣S;θ)

√
cnt(S)

1+cnt(S,w)
4: return U
5: end procedure

1: procedure MCTS-EXPLORE(S ∶ state)
2: cnt(S) ← cnt(S) + 1
3: w∗ ← argmaxw PUCT-Score(S,w)
4: if open(S⊕w∗)∧! complete(S⊕w∗) then
5: Q← MCTS-Explore(S⊕w∗)
6: Q(S) ←max(Q(S),Q)
7: else if ! complete(S⊕w∗) then
8: open(S⊕w∗) ← true
9: estimatevπ(S⊕w∗)

10: Q← argmaxopen(S⊕w)vπ(S⊕w)
11: ▷ aggregate with max or avg
12: else
13: Q← F(S⊕w∗)
14: end if
15: return Q
16: end procedure

PUCT-SCORE trades-off high scores (Q) and likely, unvisited states

F. Yvon (ISIR) Text Generation Algorithms Aussois, April 2nd, 2025 29 / 45

Heuristic token-level and step-level search

Better Searching for Good Solutions with MCTS
Monte-Carlo Tree Search [Kocsis and Szepesvári, 2006]

Computing state values

In state S, how to estimate vπ(S)?
1 sampling based: apply sampling using roll-out policy P(∣S;θ) (e.g. [Chaffin et al., 2022])

return underestimates, as costly as a complete generation for each simulation.

2 learning based: learns to predict vπ(S;λ) using an auxilary network [Leblond et al., 2021]
get complete (complete) samples [w[1∶T]] and associated scores; learns to predict scores for incomplete
states; this can be hard.

3 repurpose value networks trained with reinforcement learning (PPO) during LLM alignment
step [Liu et al., 2024]
show improvements even when using PPO-tuned language models.

F. Yvon (ISIR) Text Generation Algorithms Aussois, April 2nd, 2025 29 / 45

Heuristic token-level and step-level search

Better Searching for Good Solutions with MCTS
A compute-effective approach: REBASE [Wu et al., 2025]

Motivations

MCTS empirically dominated by
simpler alternatives eg., best-of-N

exploration costly and inefficient

main idea: use trained reward R̂(S;λ)
to improve search

return a target number N of solutions
⇒ best-of-N

sample(S,K) samples K times
w ∼ P(W ∣S;θ), returns sample

1: procedure REBASE(N ∶ int)
2: S← S0(≡C,<s>)
3: C ← ∅, t ← 1
4: S1 ← sample(S,M(S))
5: while ∣C∣ < N do
6: for S ∈ St do
7: if complete(S) then
8: C ← C ∪ {S}
9: N ← N − 1

10: end if
11: end for
12: St+1 ← ∅
13: for S ∈ St ∖ C do
14: M(S) ∝ (N − ∣C∣) exp R̂(S;λ)
15: St+1 ← St+1 ∪ sample(S,M(S))
16: end for
17: t ← t + 1
18: end while
19: end procedure

F. Yvon (ISIR) Text Generation Algorithms Aussois, April 2nd, 2025 29 / 45

Refinement

Local search and reformulation

Principles of local search

Intuition:
1 generate an initial solution [w(0)[1∶T]],

2 hill-climb neighour solutions guided by output reward model R(,)
neighbours are defined by simple operators: replace a word, insert / delete a word, swap two words, etc

F. Yvon (ISIR) Text Generation Algorithms Aussois, April 2nd, 2025 30 / 45

Refinement Refining for speed

Generating Texts Non-Auto-Regressively

Parallel Text Generation

standard left-to-right / right-to-left decoding is slow

decoding in arbitrary order does not solve this [Welleck et al., 2019]

alternative: generate multiple words simultaneously

How ? Parallel Unmasking.

F. Yvon (ISIR) Text Generation Algorithms Aussois, April 2nd, 2025 31 / 45

Refinement Refining for speed

Generating Texts Non-Auto-Regressively
Mask-Predict by Ghazvininejad et al. [2019]

1: procedure MASK-PREDICT
Input: C ∶ Context, T: Target Length
Output: Generated Sequence

2: w0 = [,wT+1 =],∀t ∈ [1 ∶ T],wt ∼ Unif(V)
3: for K iterations do
4: ToMask← top-kt(− logP(wt ∣C,w−t;θ))
5: for (t ∈ ToMask) do
6: wt ←MASK
7: end for
8: for (t ∈ ToMask) do
9: wt ← unmask(wt)

10: end for
11: end for
12: return([w[1∶T]])
13: end procedure

a better initialization samples
independently given C

unmask (l9) can be argmax or
obtained via sampling

T is unknown ? Generate with
multiple lengths in parallel

masking and generation can be
performed in parallel

K and k trade-off speed and fluency

recover Gibbs sampling with k = 1 and
iterative masking (instead of top-k)

F. Yvon (ISIR) Text Generation Algorithms Aussois, April 2nd, 2025 31 / 45

Refinement Refining for speed

Generating Texts Non-Auto-Regressively

+ + + + + +

<s>

cat sit mat

Levenshtein Transformer

a sat on

Levenshtein Transformer

Levenshtein Transformer

<s> </s>

✓ ✘ ✓

cat mat<s> </s>

[1] [3] [0]

cat mat </s>[PLH] [PLH] [PLH] [PLH]

cat mat<s> </s>a sat on the

the

Transformer Block_2

Transformer Block_1

Transformer Block_L

…

BOS x2 x3 3/+ x5 EOS

1 2 3 4 5 6

h1 h2 h3 h4 h5 h6

Placeholder
Classifier

Token
Classifier

Deletion
Classifier

Token
Embeddings

Position
Embeddings

Classifiers

Delete Tokens

Insert
Placeholders

Fill-in Tokens

The Levenvshtein Transformer [Gu et al., 2019]

“Multimodality” problem and solutions (latent alignments, KD, etc) [Xiao et al., 2023]

Mostly used for standard translation tasks (also: term constraints [Xu and Carpuat, 2021])

Decoding starts from scratch or initial solution [Xu et al., 2023]

F. Yvon (ISIR) Text Generation Algorithms Aussois, April 2nd, 2025 31 / 45

Refinement Refining for speed

Generating Texts Non-Auto-Regressively

+ + + + + +

<s>

cat sit mat

Levenshtein Transformer

a sat on

Levenshtein Transformer

Levenshtein Transformer

<s> </s>

✓ ✘ ✓

cat mat<s> </s>

[1] [3] [0]

cat mat </s>[PLH] [PLH] [PLH] [PLH]

cat mat<s> </s>a sat on the

the

Transformer Block_2

Transformer Block_1

Transformer Block_L

…

BOS x2 x3 3/+ x5 EOS

1 2 3 4 5 6

h1 h2 h3 h4 h5 h6

Placeholder
Classifier

Token
Classifier

Deletion
Classifier

Token
Embeddings

Position
Embeddings

Classifiers

Delete Tokens

Insert
Placeholders

Fill-in Tokens

LevT uses
3 classifiers to predict Deletions and Insertions

D deletion classifier predicts y ∈ {0,1}
I placeholder classifier predicts y ∈ [0 ∶ N]
I token classifier predicts y ∈ [1 ∶ ∣V∣]

F. Yvon (ISIR) Text Generation Algorithms Aussois, April 2nd, 2025 31 / 45

Refinement Refining for speed

Generating Texts Non-Auto-Regressively

Training with parallel sentences (f, e)
1 erase random words in e, yields e’

2 train placeholder & token prediction with
samples (e’, e”), (e”, e)

3 generate output e”’

4 train deletion prediction with (e, e”’)

Decode with e(0) = [e[1∶T]]:
PLH - TOK - DEL + repeat in iterative refinement

LevT encoder

Un chat dort .

f

A cat is sleeping .e

• e' is obtained from e by randomly
 dropping tokens.

• e'' is obtained from e' by inserting

 placeholders from Ref labels.

• e''' is obtained from e'' by replacing

 placeholders with Pred labels.

.cat is

Placeholder Insertion

010 0
011 0

e'

Ref:
Pred:

.cat is

Token Prediction

sleepingThe
sleepingA

[] []

Ref:
Pred:

e''

.sleepingcatThe is

Deletion

0001 0
0001 0Ref:

Pred:

e'''

Dual Policy learning with:

roll-in policy πins for [I]nsertion: empty string or random deletion from e

roll-in policy πdel for [D]eletion: model’s Insertions

expert policy π∗ from the optimal alignment⇔ Edit Distance

F. Yvon (ISIR) Text Generation Algorithms Aussois, April 2nd, 2025 31 / 45

Refinement Refining for speed

Generating Texts Non-Auto-Regressively

Training with parallel sentences (f, e)
1 erase random words in e, yields e’

2 train placeholder & token prediction with
samples (e’, e”), (e”, e)

3 generate output e”’

4 train deletion prediction with (e, e”’)

Decode with e(0) = [e[1∶T]]:
PLH - TOK - DEL + repeat in iterative refinement

LevT encoder

Un chat dort .

f

A cat is sleeping .e

• e' is obtained from e by randomly
 dropping tokens.

• e'' is obtained from e' by inserting

 placeholders from Ref labels.

• e''' is obtained from e'' by replacing

 placeholders with Pred labels.

.cat is

Placeholder Insertion

010 0
011 0

e'

Ref:
Pred:

.cat is

Token Prediction

sleepingThe
sleepingA

[] []

Ref:
Pred:

e''

.sleepingcatThe is

Deletion

0001 0
0001 0Ref:

Pred:

e'''

Dual Policy learning with:

roll-in policy πins for [I]nsertion: empty string or random deletion from e

roll-in policy πdel for [D]eletion: model’s Insertions

expert policy π∗ from the optimal alignment⇔ Edit Distance

An effective model for NAR Machine Translation

F. Yvon (ISIR) Text Generation Algorithms Aussois, April 2nd, 2025 31 / 45

Refinement Refining for speed

Self-Refinements with Prompting

Require: input Cx, model P(W ∣C,θ), prompts {Cg,Cf ,Cr},
stop condition stop()

1: S0 = generate(πθ,Cx) ▷ Initial generation
2: for iteration t ∈ 0,1, . . . do
3: Ft = generate(πθ,Cx ⊕Cf(St)) ▷ Feedback
4: if stop(Ft, t) then ▷ Stop condition
5: break
6: else
7: St+1 = generate(πθ,Cx ⊕Cr(S0 ⊕ F0 ⋅ ⋅ ⋅ ⊕Cf(St))) ▷ Refine
8: end if
9: end for

10: return St

[Madaan et al., 2023]

prompts are task-dependent

prompts can include few-shot examples

F. Yvon (ISIR) Text Generation Algorithms Aussois, April 2nd, 2025 32 / 45

Refinement Refining for speed

Self-Refinements with Prompting

I have some code . Can you give one sugges t ion to improve r e a d a b i l i t y .
Don ’ t f i x the code , j u s t g ive a sugges t ion .

{code}

Prompting for Feedback CF - Readability task

I have some code . Can you give one sugges t ion to improve r e a d a b i l i t y .
Don ’ t f i x the code , j u s t g ive a sugges t ion .

{code}

{ sugges t ion }

Now f i x the code .

Prompting for Self-Refinement CR - Readability task

F. Yvon (ISIR) Text Generation Algorithms Aussois, April 2nd, 2025 32 / 45

Refinement Refining for speed

Conclusions

Generation is Tricky

implementation details matter in generation

generation parameters matter both for quality and speed

there is much more than temperature, top-k and top-p

A call for better documenting text generation parameters in evaluations

Generation is not Solved

generation with refinement and self-critics

training multi-step generation and planing

finding compute optimal generation policies?

F. Yvon (ISIR) Text Generation Algorithms Aussois, April 2nd, 2025 33 / 45

Refinement Refining for speed

Conclusions

Generation is Tricky

implementation details matter in generation

generation parameters matter both for quality and speed

there is much more than temperature, top-k and top-p

A call for better documenting text generation parameters in evaluations

Generation is not Solved

generation with refinement and self-critics

training multi-step generation and planing

finding compute optimal generation policies?

F. Yvon (ISIR) Text Generation Algorithms Aussois, April 2nd, 2025 33 / 45

Part V

References

F. Yvon (ISIR) Text Generation Algorithms Aussois, April 2nd, 2025 34 / 45

Bibliography I

Sourya Basu, Govardana Sachitanandam Ramachandran, Nitish Shirish Keskar, and Lav R.
Varshney. Mirostat: A neural text decoding algorithm that directly controls perplexity. In Proc.
International Conference on Learning Representations, 2021. URL
https://openreview.net/forum?id=W1G1JZEIy5_.

Amanda Bertsch, Alex Xie, Graham Neubig, and Matthew Gormley. It’s MBR all the way down:
Modern generation techniques through the lens of minimum Bayes risk. In Yanai Elazar, Allyson
Ettinger, Nora Kassner, Sebastian Ruder, and Noah A. Smith, editors, Proceedings of the Big
Picture Workshop, pages 108–122, Singapore, December 2023. Association for Computational
Linguistics. doi: 10.18653/v1/2023.bigpicture-1.9. URL
https://aclanthology.org/2023.bigpicture-1.9.

Stella Biderman, Hailey Schoelkopf, Lintang Sutawika, Leo Gao, Jonathan Tow, Baber Abbasi,
Alham Fikri Aji, Pawan Sasanka Ammanamanchi, Sidney Black, Jordan Clive, Anthony DiPofi,
Julen Etxaniz, Benjamin Fattori, Jessica Zosa Forde, Charles Foster, Jeffrey Hsu, Mimansa
Jaiswal, Wilson Y. Lee, Haonan Li, Charles Lovering, Niklas Muennighoff, Ellie Pavlick, Jason
Phang, Aviya Skowron, Samson Tan, Xiangru Tang, Kevin A. Wang, Genta Indra Winata,
François Yvon, and Andy Zou. Lessons from the Trenches on Reproducible Evaluation of
Language Models, May 2024.

Peter F. Brown, Stephen A. Della Pietra, Vincent J. Della Pietra, Jennifer C. Lai, and Robert L.
Mercer. An estimate of an upper bound for the entropy of English. Computational Linguistics, 18
(1):31–40, 1992.

F. Yvon (ISIR) Text Generation Algorithms Aussois, April 2nd, 2025 35 / 45

https://openreview.net/forum?id=W1G1JZEIy5_
https://aclanthology.org/2023.bigpicture-1.9

Bibliography II

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel Ziegler,
Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray,
Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever,
and Dario Amodei. Language models are few-shot learners. In H. Larochelle, M. Ranzato,
R. Hadsell, M.F. Balcan, and H. Lin, editors, Advances in Neural Information Processing Systems,
volume 33, pages 1877–1901. Curran Associates, Inc., 2020. URL https:
//proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf.

Antoine Chaffin, Vincent Claveau, and Ewa Kijak. PPL-MCTS: Constrained textual generation
through discriminator-guided MCTS decoding. In Marine Carpuat, Marie-Catherine
de Marneffe, and Ivan Vladimir Meza Ruiz, editors, Proceedings of the 2022 Conference of the
North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, pages 2953–2967, Seattle, United States, July 2022. Association for
Computational Linguistics. doi: 10.18653/v1/2022.naacl-main.215. URL
https://aclanthology.org/2022.naacl-main.215.

Charlie Chen, Sebastian Borgeaud, Geoffrey Irving, Jean-Baptiste Lespiau, Laurent Sifre, and John
Jumper. Accelerating large language model decoding with speculative sampling, 2023. URL
https://arxiv.org/abs/2302.01318.

F. Yvon (ISIR) Text Generation Algorithms Aussois, April 2nd, 2025 36 / 45

https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://aclanthology.org/2022.naacl-main.215
https://arxiv.org/abs/2302.01318

Bibliography III

Yung-Sung Chuang, Yujia Xie, Hongyin Luo, Yoon Kim, James R. Glass, and Pengcheng He. Dola:
Decoding by contrasting layers improves factuality in large language models. In The Twelfth
International Conference on Learning Representations, 2024. URL
https://openreview.net/forum?id=Th6NyL07na.

Bryan Eikema and Wilker Aziz. Is MAP Decoding All You Need? The Inadequacy of the Mode in
Neural Machine Translation. In Donia Scott, Nuria Bel, and Chengqing Zong, editors,
Proceedings of the 28th International Conference on Computational Linguistics, pages 4506–4520,
Barcelona, Spain (Online), December 2020. International Committee on Computational
Linguistics. doi: 10.18653/v1/2020.coling-main.398. URL
https://aclanthology.org/2020.coling-main.398.

Angela Fan, Mike Lewis, and Yann Dauphin. Hierarchical neural story generation. In Iryna
Gurevych and Yusuke Miyao, editors, Proceedings of the 56th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers), pages 889–898, Melbourne, Australia,
July 2018. Association for Computational Linguistics. doi: 10.18653/v1/P18-1082. URL
https://aclanthology.org/P18-1082.

Matthew Finlayson, John Hewitt, Alexander Koller, Swabha Swayamdipta, and Ashish Sabharwal.
Closing the curious case of neural text degeneration. In Proceedings of the International
Conference on Representation Learning, ICLR, 2024. URL
https://openreview.net/forum?id=dONpC9GL1o.

F. Yvon (ISIR) Text Generation Algorithms Aussois, April 2nd, 2025 37 / 45

https://openreview.net/forum?id=Th6NyL07na
https://aclanthology.org/2020.coling-main.398
https://aclanthology.org/P18-1082
https://openreview.net/forum?id=dONpC9GL1o

Bibliography IV

Marjan Ghazvininejad, Omer Levy, Yinhan Liu, and Luke Zettlemoyer. Mask-Predict: Parallel
Decoding of Conditional Masked Language Models. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing and the 9th International Joint Conference on
Natural Language Processing (EMNLP-IJCNLP), pages 6112–6121, Hong Kong, China, November
2019. Association for Computational Linguistics. doi: 10.18653/v1/D19-1633.

Jiatao Gu, Changhan Wang, and Junbo Zhao. Levenshtein Transformer. In Hanna M. Wallach,
Hugo Larochelle, Alina Beygelzimer, Florence d’Alché-Buc, Emily B. Fox, and Roman Garnett,
editors, Advances in Neural Information Processing Systems 32: Annual Conference on Neural
Information Processing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC,
Canada, pages 11179–11189, 2019.

John Hewitt, Christopher Manning, and Percy Liang. Truncation sampling as language model
desmoothing. In Yoav Goldberg, Zornitsa Kozareva, and Yue Zhang, editors, Findings of the
Association for Computational Linguistics: EMNLP 2022, pages 3414–3427, Abu Dhabi, United
Arab Emirates, December 2022. Association for Computational Linguistics. doi:
10.18653/v1/2022.findings-emnlp.249. URL
https://aclanthology.org/2022.findings-emnlp.249.

Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and Yejin Choi. The curious case of neural text
degeneration. In International Conference on Learning Representations, 2020. URL
https://openreview.net/forum?id=rygGQyrFvH.

F. Yvon (ISIR) Text Generation Algorithms Aussois, April 2nd, 2025 38 / 45

https://aclanthology.org/2022.findings-emnlp.249
https://openreview.net/forum?id=rygGQyrFvH

Bibliography V

Jungo Kasai, Keisuke Sakaguchi, Ronan Le Bras, Dragomir Radev, Yejin Choi, and Noah A. Smith.
A call for clarity in beam search: How it works and when it stops. In Nicoletta Calzolari,
Min-Yen Kan, Veronique Hoste, Alessandro Lenci, Sakriani Sakti, and Nianwen Xue, editors,
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language
Resources and Evaluation (LREC-COLING 2024), pages 77–90, Torino, Italia, May 2024. ELRA
and ICCL. URL https://aclanthology.org/2024.lrec-main.7.

Nitish Shirish Keskar, Bryan McCann, Lav R. Varshney, Caiming Xiong, and Richard Socher. CTRL:
A Conditional Transformer Language Model for Controllable Generation, September 2019.

Levente Kocsis and Csaba Szepesvári. Bandit based Monte-Carlo planning. In Proceedings of the
17th European Conference on Machine Learning, ECML’06, pages 282–293, Berlin, Heidelberg,
2006. Springer-Verlag. ISBN 3-540-45375-X. doi: 10.1007/11871842_29.

Wouter Kool, Herke Van Hoof, and Max Welling. Stochastic beams and where to find them: The
Gumbel-top-k trick for sampling sequences without replacement. In Kamalika Chaudhuri and
Ruslan Salakhutdinov, editors, Proceedings of the 36th International Conference on Machine
Learning, volume 97 of Proceedings of Machine Learning Research, pages 3499–3508. PMLR,
2019-06-09/2019-06-15.

F. Yvon (ISIR) Text Generation Algorithms Aussois, April 2nd, 2025 39 / 45

https://aclanthology.org/2024.lrec-main.7

Bibliography VI

Ben Krause, Akhilesh Deepak Gotmare, Bryan McCann, Nitish Shirish Keskar, Shafiq Joty, Richard
Socher, and Nazneen Fatema Rajani. GeDi: Generative discriminator guided sequence
generation. In Marie-Francine Moens, Xuanjing Huang, Lucia Specia, and Scott Wen-tau Yih,
editors, Findings of the Association for Computational Linguistics: EMNLP 2021, pages
4929–4952, Punta Cana, Dominican Republic, November 2021. Association for Computational
Linguistics. doi: 10.18653/v1/2021.findings-emnlp.424.

Rémi Leblond, Jean-Baptiste Alayrac, Laurent Sifre, Miruna Pislar, Lespiau Jean-Baptiste, Ioannis
Antonoglou, Karen Simonyan, and Oriol Vinyals. Machine translation decoding beyond beam
search. In Marie-Francine Moens, Xuanjing Huang, Lucia Specia, and Scott Wen-tau Yih,
editors, Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing,
pages 8410–8434, Online and Punta Cana, Dominican Republic, November 2021. Association
for Computational Linguistics. doi: 10.18653/v1/2021.emnlp-main.662. URL
https://aclanthology.org/2021.emnlp-main.662.

Yaniv Leviathan, Matan Kalman, and Yossi Matias. Fast inference from transformers via speculative
decoding. In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan
Sabato, and Jonathan Scarlett, editors, Proceedings of the 40th International Conference on
Machine Learning, volume 202 of Proceedings of Machine Learning Research, pages
19274–19286. PMLR, 23–29 Jul 2023. URL
https://proceedings.mlr.press/v202/leviathan23a.html.

F. Yvon (ISIR) Text Generation Algorithms Aussois, April 2nd, 2025 40 / 45

https://aclanthology.org/2021.emnlp-main.662
https://proceedings.mlr.press/v202/leviathan23a.html

Bibliography VII

Xiang Lisa Li, Ari Holtzman, Daniel Fried, Percy Liang, Jason Eisner, Tatsunori Hashimoto, Luke
Zettlemoyer, and Mike Lewis. Contrastive decoding: Open-ended text generation as
optimization. In Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki, editors, Proceedings of
the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers),
pages 12286–12312, Toronto, Canada, July 2023. Association for Computational Linguistics.
doi: 10.18653/v1/2023.acl-long.687. URL https://aclanthology.org/2023.acl-long.687.

Jiacheng Liu, Andrew Cohen, Ramakanth Pasunuru, Yejin Choi, Hannaneh Hajishirzi, and Asli
Celikyilmaz. Don’t throw away your value model! Generating more preferable text with
Value-Guided Monte-Carlo Tree Search decoding. In First Conference on Language Modeling,
2024. URL https://openreview.net/pdf?id=kh9Zt2Ldmn.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri
Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, Shashank Gupta, Bodhisattwa Prasad
Majumder, Katherine Hermann, Sean Welleck, Amir Yazdanbakhsh, and Peter Clark. Self-refine:
Iterative refinement with self-feedback. In Thirty-seventh Conference on Neural Information
Processing Systems, 2023. URL https://openreview.net/forum?id=S37hOerQLB.

Clara Meister and Ryan Cotterell. Language model evaluation beyond perplexity. In Proceedings of
the 59th Annual Meeting of the Association for Computational Linguistics and the 11th
International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pages
5328–5339, Online, August 2021. Association for Computational Linguistics. doi:
10.18653/v1/2021.acl-long.414. URL https://aclanthology.org/2021.acl-long.414.

F. Yvon (ISIR) Text Generation Algorithms Aussois, April 2nd, 2025 41 / 45

https://aclanthology.org/2023.acl-long.687
https://openreview.net/pdf?id=kh9Zt2Ldmn
https://openreview.net/forum?id=S37hOerQLB
https://aclanthology.org/2021.acl-long.414

Bibliography VIII

Clara Meister, Ryan Cotterell, and Tim Vieira. If beam search is the answer, what was the
question? In Bonnie Webber, Trevor Cohn, Yulan He, and Yang Liu, editors, Proceedings of the
2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages
2173–2185. Association for Computational Linguistics, 2020a. doi:
10.18653/v1/2020.emnlp-main.170. URL https://aclanthology.org/2020.emnlp-main.170.

Clara Meister, Tim Vieira, and Ryan Cotterell. Best-first beam search. Transactions of the
Association for Computational Linguistics, 8:795–809, 2020b. doi: 10.1162/tacl_a_00346.

Clara Meister, Tiago Pimentel, Gian Wiher, and Ryan Cotterell. Locally typical sampling.
Transactions of the Association for Computational Linguistics, 11:102–121, 2023. doi:
10.1162/tacl_a_00536. URL https://aclanthology.org/2023.tacl-1.7.

Kenton Murray and David Chiang. Correcting length bias in neural machine translation. In Ondřej
Bojar, Rajen Chatterjee, Christian Federmann, Mark Fishel, Yvette Graham, Barry Haddow,
Matthias Huck, Antonio Jimeno Yepes, Philipp Koehn, Christof Monz, Matteo Negri, Aurélie
Névéol, Mariana Neves, Matt Post, Lucia Specia, Marco Turchi, and Karin Verspoor, editors,
Proceedings of the Third Conference on Machine Translation: Research Papers, pages 212–223,
Brussels, Belgium, October 2018. Association for Computational Linguistics. doi:
10.18653/v1/W18-6322. URL https://aclanthology.org/W18-6322.

F. Yvon (ISIR) Text Generation Algorithms Aussois, April 2nd, 2025 42 / 45

https://aclanthology.org/2020.emnlp-main.170
https://aclanthology.org/2023.tacl-1.7
https://aclanthology.org/W18-6322

Bibliography IX

Felix Stahlberg and Bill Byrne. On NMT search errors and model errors: Cat got your tongue? In
Kentaro Inui, Jing Jiang, Vincent Ng, and Xiaojun Wan, editors, Proceedings of the 2019
Conference on Empirical Methods in Natural Language Processing and the 9th International Joint
Conference on Natural Language Processing (EMNLP-IJCNLP), pages 3356–3362, Hong Kong,
China, November 2019. Association for Computational Linguistics. doi:
10.18653/v1/D19-1331. URL https://aclanthology.org/D19-1331.

Yixuan Su, Tian Lan, Yan Wang, Dani Yogatama, Lingpeng Kong, and Nigel Collier. A contrastive
framework for neural text generation. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave,
K. Cho, and A. Oh, editors, Advances in Neural Information Processing Systems, volume 35, pages
21548–21561. Curran Associates, Inc., 2022. URL https://proceedings.neurips.cc/paper_files/
paper/2022/file/871cae8f599cb8bbfcb0f58fe1af95ad-Paper-Conference.pdf.

Mirac Suzgun, Luke Melas-Kyriazi, and Dan Jurafsky. Follow the wisdom of the crowd: Effective
text generation via minimum Bayes risk decoding. In Anna Rogers, Jordan Boyd-Graber, and
Naoaki Okazaki, editors, Findings of the Association for Computational Linguistics: ACL 2023,
pages 4265–4293, Toronto, Canada, July 2023. Association for Computational Linguistics. doi:
10.18653/v1/2023.findings-acl.262. URL https://aclanthology.org/2023.findings-acl.262.

Sean Welleck, Kianté Brantley, Hal Daumé Iii, and Kyunghyun Cho. Non-monotonic sequential text
generation. In Kamalika Chaudhuri and Ruslan Salakhutdinov, editors, Proceedings of the 36th
International Conference on Machine Learning, volume 97 of Proceedings of Machine Learning
Research, pages 6716–6726. PMLR, 09–15 Jun 2019. URL
https://proceedings.mlr.press/v97/welleck19a.html.

F. Yvon (ISIR) Text Generation Algorithms Aussois, April 2nd, 2025 43 / 45

https://aclanthology.org/D19-1331
https://proceedings.neurips.cc/paper_files/paper/2022/file/871cae8f599cb8bbfcb0f58fe1af95ad-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/871cae8f599cb8bbfcb0f58fe1af95ad-Paper-Conference.pdf
https://aclanthology.org/2023.findings-acl.262
https://proceedings.mlr.press/v97/welleck19a.html

Bibliography X

Sean Welleck, Ilia Kulikov, Jaedeok Kim, Richard Yuanzhe Pang, and Kyunghyun Cho. Consistency
of a recurrent language model with respect to incomplete decoding. In Bonnie Webber, Trevor
Cohn, Yulan He, and Yang Liu, editors, Proceedings of the 2020 Conference on Empirical Methods
in Natural Language Processing (EMNLP), pages 5553–5568, Online, November 2020a.
Association for Computational Linguistics. doi: 10.18653/v1/2020.emnlp-main.448. URL
https://aclanthology.org/2020.emnlp-main.448.

Sean Welleck, Ilia Kulikov, Stephen Roller, Emily Dinan, Kyunghyun Cho, and Jason Weston.
Neural text generation with unlikelihood training. In International Conference on Learning
Representations, 2020b. URL https://openreview.net/forum?id=SJeYe0NtvH.

Yangzhen Wu, Zhiqing Sun, Shanda Li, Sean Welleck, and Yiming Yang. Inference scaling laws: An
empirical analysis of compute-optimal inference for LLM problem-solving. In The Thirteenth
International Conference on Learning Representations, 2025. URL
https://openreview.net/forum?id=VNckp7JEHn.

Yisheng Xiao, Lijun Wu, Junliang Guo, Juntao Li, Min Zhang, Tao Qin, and Tie-Yan Liu. A survey
on non-autoregressive generation for neural machine translation and beyond. IEEE Trans.
Pattern Anal. Mach. Intell., 45(10):11407–11427, October 2023. ISSN 0162-8828. doi:
10.1109/TPAMI.2023.3277122. URL https://doi.org/10.1109/TPAMI.2023.3277122.

F. Yvon (ISIR) Text Generation Algorithms Aussois, April 2nd, 2025 44 / 45

https://aclanthology.org/2020.emnlp-main.448
https://openreview.net/forum?id=SJeYe0NtvH
https://openreview.net/forum?id=VNckp7JEHn
https://doi.org/10.1109/TPAMI.2023.3277122

Bibliography XI

Yuxi Xie, Kenji Kawaguchi, Yiran Zhao, James Xu Zhao, Min-Yen Kan, Junxian He, and Michael Xie.
Self-evaluation guided beam search for reasoning. In A. Oh, T. Naumann, A. Globerson,
K. Saenko, M. Hardt, and S. Levine, editors, Advances in Neural Information Processing Systems,
volume 36, pages 41618–41650. Curran Associates, Inc., 2023. URL
https://proceedings.neurips.cc/paper_files/paper/2023/file/
81fde95c4dc79188a69ce5b24d63010b-Paper-Conference.pdf.

Jitao Xu, Josep Crego, and François Yvon. Integrating translation memories into
non-autoregressive machine translation. In Proceedings of the Conference of the European
Chapter of the Association for Computational Linguistics, pages 1326–1338, Dubrovnik, Croatia,
2023. URL https://aclanthology.org/2023.eacl-main.96.

Weijia Xu and Marine Carpuat. EDITOR: An Edit-Based Transformer with Repositioning for Neural
Machine Translation with Soft Lexical Constraints. Transactions of the Association for
Computational Linguistics, 9:311–328, 2021. ISSN 2307-387X. doi: 10.1162/tacl_a_00368.

F. Yvon (ISIR) Text Generation Algorithms Aussois, April 2nd, 2025 45 / 45

https://proceedings.neurips.cc/paper_files/paper/2023/file/81fde95c4dc79188a69ce5b24d63010b-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/81fde95c4dc79188a69ce5b24d63010b-Paper-Conference.pdf
https://aclanthology.org/2023.eacl-main.96

	Basics
	Basics Concepts and Notations
	Evaluating Language Models
	Do Language Models Generate Valid Texts?
	Figures of Merits for Language Models
	Evaluating LMs through Instruction-based Generation

	Algorithms for Text Generation
	Single pass decoding
	Diversity
	Advanced topics
	Fast Generation with Speculative sampling

	Constrained Generation
	Meta-Generation Strategies
	Parallel Search
	Heuristic token-level and step-level search
	Refinement
	Refining for speed

	References
	References

