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Goal and Motivations

Understanding Contextual Generation is Key

LLMs are multitask learners & problem solvers via prompting
contextual generation procedure a critical component

evaluation of linguistic abilities of LLMs requires generation
wrt. agreement, proper word order, semantic consistency etc.

test time inference and multi-step “reasoning” rely on meta-generation strategies

detecting artificial texts requires deep understanding of generation strategies

good artificial data helps ML
privacy, confidentiality, distillation / data augmentation, artificial text detection

computation of expectations Ew[1∶T]∼P(f(w[1∶T])) requires good text samples
e.g., to train GANs or PPO
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Goal and Motivations

This class

✔ understand the variety of controls for basic text generation
with generate as the main tool ( generate has a similar, less complete interface)

✔ learn to generate texts with constraints

✔ explore some meta-generation algorithms

train LLMs for better / adapted / non-autoregressive / test time ... generation

generate
model_inputs = token i ze r (["A sequence of numbers: 1, 2" ] , r e tu rn_ t en so r s="pt" ) . to ("cuda" )

# By defau l t , the output w i l l conta in up to 20 tokens
genera ted_ ids = model . generate (** model_inputs )
token i ze r . batch_decode ( generated_ids , s k i p _ s p e c i a l _ t o k e n s=True )[0]

# Se t t i ng ‘ max_new_tokens ‘ a l lows you to con t ro l the maximum length
genera ted_ ids = model . generate (** model_inputs , max_new_tokens=50)
token i ze r . batch_decode ( generated_ids , s k i p _ s p e c i a l _ t o k e n s=True )[0]
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Part I

Basics

F. Yvon (ISIR) Text Generation Algorithms Aussois, April 2nd, 2025 4 / 45



Basics Concepts and Notations

A Language Model is a Distribution

Language Models (LM)

Assume finite vocabulary V, with V̄ = V ∪ {<s>,</s>}
A neural language model is a parameterized distribution over complete texts in <s>V∗</s> :

<s>w1 . . .wT</s>→ P(<s>w1 . . .wT</s> ∣θ)
∀T > 0,∀w1 . . .wT ,P(<s>w1 . . .wT</s> ∣θ) ≥ 0,

∑
T,w[1∶T]

P(<s>w1 . . .wT</s> ∣θ) = 1

Notations:

w[1∶T] = w1 . . .wT

[w[1∶T] assumes w0 = <s>, denotes a strict prefix (unless wT = </s>)

[w[1∶T]] assumes wT+1 = </s>, denotes a complete text

w<t = [w[1∶t−1] = <s>w1 . . .wt−1

[w−t] ∶ <s> . . .wt−1 wt+1 . . .wT</s>

for wT ≠ </s>, P([w1 . . .wT ∣θ) is a prefix probability

∑w[1∶T]
P([w1 . . .wT ∣θ) = 1 for same length prefixes
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Basics Concepts and Notations

Formalizing Text Generation as Search

Unconditional Text Generation: find “most likely text”

[w∗1 . . .w∗T∗ ] = argmax
T,[w[1∶T]]

P([w[1∶T]] ∣θ)

Finding T∗ is part of the problem

Conditional Text Generation: find “most likely response” given input context / query (MAP)

[w∗1 . . .w∗T∗ ] = argmax
T,[w[1∶T]]

P([w[1∶T]] ∣C,θ)

C : a prefix (text completion), a question (question answering), a source text (translation), a long text
(summarization), a speech file (transcription), an image (captioning), . . .

A variety of situations between open set generation (many acceptable texts) and near
deterministic generation (one single acceptable output)
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Basics Concepts and Notations

Formalizing Text Generation as Search

Unconditional Text Generation: Find the Mode

[w∗1 . . .w∗T∗ ] = argmax
T,[w[1∶T]]

P([w[1∶T]] ∣θ)

= argmax
T,[w[1∶T]]

T+1

∏
t=1

P(wt ∣w<t;θ) Chain rule for autoregressive / causal LMs

= argmax
T,[w[1∶T]]

log
T+1

∏
t=1

P(wt ∣w<t;θ) log is monotonous

= argmin
T,[w[1∶T]]

T+1

∑
t=1
− logP(wt ∣w<t;θ) log turns∏ into∑

− logP(wt ∣w<t;θ) > 0 is the surprisal; upper bounded by log ∣V∣
quantifies how much wt was expected given w<t, used in psycholinguistic studies

maxT,[w[1∶T]]
P([w[1∶T]] ∣θ) equivalently minimizes a summation of T + 1 surprisals
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Basics Concepts and Notations

Formalizing Text Generation as Search

Maximum “a posteriori” (MAP) Text Generation

P(w ∣w<t;θ) =
exp logit(w,w<t;θ)

∑w′∈V exp logit(w′,w<t;θ)
logP(w ∣w<t;θ) = logit(w,w<t;θ) − log ∑

w′∈V
exp logit(w′,w<t;θ)

[w∗1 . . .w∗T∗ ] = argmin
T,[w[1∶T]]

−(
T+1

∑
t=1

logit(wt,w<t;θ) − log∑
w′

exp logit(w′,w<t;θ))

= argmin
T,[w[1∶T]]

−
T+1

∑
t=1

logit(wt,w<t;θ)

X a finite set, f ∶ X → R a real function, exp f(x)
∑x′∈X exp f(x′) is the softmax

softmax(x) is always > 0; almost 1 for the largest f(x), almost 0 otherwise

computing the logits requires a full forward pass in Transformers (O(L × (T2 × dmodel + T × d2
model))

normalizer ∑w′∈V exp logit(w′,w<t;θ) can be expensive to compute (∑ over ∣V∣ terms)
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Basics Concepts and Notations

Searching, searching, searching

Z source https://towardsdatascience.com/decoding-strategies-that-you-need-to-know-for-response-generation

− logP(wt ∣w<t;θ) factorize / decompose over arcs⇒ incremental score computation

− logP(wt ∣w<t;θ) depends on the entire prefix⇒ no DP solution

exact search is doable [Stahlberg and Byrne, 2019], yet very costly⇒ heuristic search
(greedy, DFS, Beam, A∗, etc)
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Basics Concepts and Notations

Searching, searching, searching

Z source https://towardsdatascience.com/decoding-strategies-that-you-need-to-know-for-response-generation

Variants and generalizations:

restrict solutions to a strict subset of <s>V∗</s>: calculability and complexity issues

use alternative, non-decomposable score functions F([w[1∶t]],C; θ)
use sparse output reward that only evaluate leaf nodes R([w[1∶T]],C; θ)
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Evaluating Language Models Do Language Models Generate Valid Texts?

Language model (de)generation
Language Generation is Hard

The promise Z OpenAi Website https://openai.com/blog/better-language-models/

GPT-2 generates synthetic text samples in response to the model being primed with an arbitrary
input. The model is chameleon-like—it adapts to the style and content of the conditioning text.
This allows the user to generate realistic and coherent continuations about a topic of their
choosing, as seen by the following select samples.

GPT-2 displays a broad set of capabilities, including the ability to generate conditional synthetic
text samples of unprecedented quality, where we prime the model with an input and have it
generate a lengthy continuation.
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Evaluating Language Models Do Language Models Generate Valid Texts?

Language model (de)generation
The truth about language model generation

Prefix Lyrically the song has excerpts of different languages including French , Spanish ,
Greedy German , Italian , Portuguese , Spanish , Portuguese , Portuguese , Portuguese , Por-

tuguese , Portuguese , Portuguese , Portuguese , Portuguese , Portuguese , Portuguese ,
Portuguese , Portuguese , Portuguese , ...

Top3 German , Italian , Portuguese , Spanish , Portuguese , Portuguese, Italian and Spanish.
It is also available in English, French and Spanish. In addition to its lyrics, the album
features a number of original songs, ...

Nucleus-0.3 German , Italian , Portuguese , Spanish , Portuguese , Italian , Portuguese , Spanish ,
Portuguese , Spanish , Portuguese , Spanish , Portuguese , Spanish , Portuguese , Spanish
, Portuguese , Spanish , Portuguese , Spanish , Portuguese , ...

Prefix The first pair of pereiopods is armed with a large , asymm
Greedy etrical, and long-range laser cannon. The second pair is armed with a large , asymmet-

rical, and long-range laser cannon. The third pair is armed with a large , asymmetrical,
and long-range laser cannon. The fourth pair is armed with a large ...

Top3 etrical, and highly mobile head, and the second pair has a small , asymmetrical, and
highly mobile head. The second pair has a large and highly mobile head, and the third
pair is armed with a large and highly mobile head. The first pair ...

Nucleus-0.3 etrical head and a large body. The first pair of pereiopods is armed with a large , asym-
metrical head and a large body. The first pair of pereiopods is armed with a large ,
asymmetrical head and a large body. The first pair of pereiopods is armed ...

GPT-2 generated examples from [Welleck et al., 2020b].
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Evaluating Language Models Do Language Models Generate Valid Texts?

Language model (de)generation
Language Generation is Hard

High probability sentences do not resemble human productions

too many repetitions

high frequency tokens over-represented, low frequency tokens under-represented

lack of lexical diversity

lack of global consistency

posterior distribution poorly calibrated
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Evaluating Language Models Do Language Models Generate Valid Texts?

Language model (de)generation
Language Generation is Hard
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Evaluating Language Models Figures of Merits for Language Models

Evaluating Language Models with Perplexity

Perplexity of a test sequence [w[1∶T]] [Brown et al., 1992]

PPL(Mθ) = 2
−1
T log2 P([w[1∶T]] ∣θ) = P([w[1∶T]] ∣θ)−

1
T

Assumes “sufficiently large” T . Alt take: normalizer = T+1.

The cross-entropy between the source (S) and model Mθ:

H(S,Mθ) = lim
T→∞

−1
T

log2 P([w[1∶T]] ∣θ)

H(S,Mθ) upper bounds H(S)
PLL() homogeneous to a vocabulary size

PPL(Unif) = 2
−1
T log2 P([w[1∶T]] ∣θ) = 2

−1
T T log2(1/∣V∣) = ∣V∣
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Evaluating Language Models Figures of Merits for Language Models

Evaluating Language Models with Perplexity
PPLs are hard to compare

Comparing LMs with different support or tokenizers ?
1 closed-world LMs assume a fixed vocabulary size ∣V∣ - models with different V cannot be

compared.

2 open-world models with different segmentations can be compared, must use a common
normalizer

3 typical normalizers when using subwords vocabularies

number of chars⇒ bits per char ≡ log2 of char-normalized PPL
number of bytes⇒ bits per byte ≡ log2 of byte-normalized PPL

Also ? Comparing LMs for different languages?
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Evaluating Language Models Figures of Merits for Language Models

Evaluating Language Models with Perplexity

Implementing ∑T
t=1 logP(wt ∣w<t;θ) with finite, fixed-length window of size L?

4 possible implementations

split in short parts of length Ti < L (lines, paragraphs), average over parts;

“reshape” text into ⌊T/L⌋ sequences of length L, average logP(wL ∣w<L) over blocks

“reshape” text into T − L sequences of length L with shift 1, average logP(wL ∣w<L) over
blocks;

“reshape” text into ⌊2 × (T − L)/L⌋ sequences of length L with shift L/2, average
∑L

t=L/2 logP(wt ∣w<t) over blocks;

Z https://huggingface.co/docs/transformers/perplexity
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Evaluating Language Models Figures of Merits for Language Models

Evaluating Language Models with Perplexity

Implementing ∑T
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4 possible implementations

split in short parts of length Ti < L (lines, paragraphs), average over parts;

“reshape” text into ⌊T/L⌋ sequences of length L, average logP(wL ∣w<L) over blocks

“reshape” text into T − L sequences of length L with shift 1, average logP(wL ∣w<L) over
blocks;

“reshape” text into ⌊2 × (T − L)/L⌋ sequences of length L with shift L/2, average
∑L

t=L/2 logP(wt ∣w<t) over blocks;

Z https://huggingface.co/docs/transformers/perplexity

Another Caveat: segmentation ambiguities and exact surprisal computations

P(abcd ∣θ) =∑P(a_bcd ∣θ) +P(ab_cd ∣θ) + ...P(abc_d ∣θ)
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Evaluating Language Models Figures of Merits for Language Models

Evaluating LMs with distributional properties

rep/ℓ: a repetition / diversity metric [Welleck et al., 2020b]

Given a set D of length-T sequences,

rep/ℓ = 1
∣D∣T ∑x∈D

T
∑
t=1

I [wt ∈ wt−ℓ−1∶t−1].

I the indicator function. Generalizes to repeated n-gram sequences.
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Evaluating Language Models Figures of Merits for Language Models

Evaluating LMs with distributional properties

rep/ℓ: a repetition / diversity metric [Welleck et al., 2020b]

Given a set D of length-T sequences,

rep/ℓ = 1
∣D∣T ∑x∈D

T
∑
t=1

I [wt ∈ wt−ℓ−1∶t−1].

I the indicator function. Generalizes to repeated n-gram sequences.

Global distributional properties [Meister and Cotterell, 2021]

Zipfian behavior, power-law distribution

Pzipf(W = wk) ∝ k−s, s ≈ 1

wk is the kth most frequent token

type-token ratios (TTR) (depend on length)

proportion of frequency 1 words (hapax legomena)

proportion specific of token classes (punctuation, stopwords, nouns, etc)

consistency metrics ?
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Evaluating Language Models Evaluating LMs through Instruction-based Generation

Evaluating zero-shot / few-shot behaviour
Reduce NLP tasks to text generation with appropriate instructions in NL as prompts

Prompts = instructions in Natural Language + [tricks] (from [Brown et al., 2020])

Specifically, we evaluate GPT-3 on over two dozen NLP datasets,(...) For each task, we evaluate
GPT-3 under 3 conditions:

“zero-shot” learning, where no demonstrations are allowed and only an instruction in
natural language is given to the model.
“Evaluate 125 + 12 =”

“one-shot learning”, where we allow only one demonstration, and
“Evaluate 17 + 301 = 318 </s>Evaluate 125 + 12 = ”

“few-shot learning”, or in-context learning, where we allow as many demonstrations as will
fit into the model’s context window,
“Evaluate 17 + 301 = 318 </s>Evaluate 48 + 67 = 105 </s>Evaluate 125 + 12 = ”

Tricks: “On tasks with free-form completion, we use beam search with the same parameters as [
RSR+19]: a beam width of 4 and a length penalty of α = 0.6.” (+ stopping criterion)
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Evaluating Language Models Evaluating LMs through Instruction-based Generation

Evaluating zero-shot / few-shot behaviour
Reduce NLP tasks to text generation with appropriate instructions in NL as prompts

Task types and their evaluation [Biderman et al., 2024]

Assuming prompt / instruction: w1 . . .wT .

Yes / No answers

Question: [Question] True or false? [prediction]

Correct if P(True ∣prompt) > P(False ∣prompt).
Multiple choice answers.

Question: Which factor will most likely cause a person to develop a fever?
Correct Answer a bacterial population in the bloodstream
Incorrect Answer a leg muscle relaxing after exercise
Incorrect Answer several viral particles on the skin
Incorrect Answer carbohydrates being digested in the stomach

Correct if P(Correct answer ∣prompt) > P(Alternative ∣prompt)
Alt. take - index choices with letter or numbers, evaluate the probability of the correct index.

One word continuation. Correct if (wT+1 == w∗)

Multiple word continuation. Measure ∆(wT+1 . . .wT+S;w∗1 . . .w∗L ) with ∆() task-dependent
distance (ROUGE for summarization, BLEU for MT, etc)
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Evaluating Language Models Evaluating LMs through Instruction-based Generation

Evaluating zero-shot / few-shot behaviour
Reduce NLP tasks to text generation with appropriate instructions in NL as prompts

Understanding “instruction learning” results

Should pay attention to:

how much effort went into prompting ?

how many shots is few shots?

free generation or text infilling or multi-choice answers ?

how were alternatives selected / generated ?

how was search performed (greedy or beam ) ?

how does generation stops?
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Part II

Algorithms for Text Generation
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Single pass decoding

Deterministic Algorithms for Text Generation
Searching for the Maximum “A Posteriori”

Greedy search (a.k.a argmax )

w0 =<s>

∀t > 0,wt = argmax
w∈V̄

logP(w ∣w<t)

V̄ = V ∪ {<s>,</s>}
Generation stops with </s> or when some maximum length Tmax is reached.

Greedy search is deterministic: always produces the same output, given its initial conditions.

Does not require to compute softmax normalizer log(∑ exp())
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Single pass decoding

Deterministic Algorithms for Text Generation
Searching for the Maximum “A Posteriori”

Beam search [with histogram pruning]

B0 = {<s>}
∀t > 0,Bt = argmax

B′t⊆Ht,

∣B′t ∣=k

L(B′t)

Bt is the beam, Ht contains all possible extensions of Ht−1.

L is a scoring function that operates over sets B, eg. L(B) = ∑w[1∶t]∈B logP(w[1∶t]).

For k = 1, beam search is greedy search

Beam search is also deterministic

For k > 1, does require to compute softmax normalizer log(∑ exp()).
Also: adaptive beam size, with Bt containing all outputs with score within α % of the current best.

A faster version borrows ideas from A∗ search [Meister et al., 2020b]

generate: k = num_beams
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Single pass decoding

Deterministic Algorithms for Text Generation
Searching for the Maximum “A Posteriori”

Vanilla Beam stopping condition

([w∗[1∶t], s
∗
t ) = argmaxs Bt, w∗t = </s>

In words: the top hypothesis in the beam is complete.
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Single pass decoding

Deterministic Algorithms for Text Generation
Flavors of Beam Search - Delivering k solutions [Kasai et al., 2024]

k: beam size, M: maximum length,
V: Vocabulary, score(⋅): scoring function.
1: B0 ← {⟨0,<s>⟩}
2: for t ∈ {1, . . . ,M − 1} do
3: for ⟨s,w[1∶l]⟩ ∈ Bt−1 do
4: if wl = </s> then
5: H.add(⟨s,w[1∶l]⟩)
6: continue
7: end if
8: for w ∈ V do
9: s← score(w[1∶l] ○ w)
10: H.add(⟨s,w[1∶l] ○ w⟩)
11: end for
12: end for
13: Bt ← ∅
14: while ∣Bt ∣ < k do
15: ⟨s,w[1∶l]⟩ ← H.max()
16: Bt.add(⟨s,w[1∶l]⟩)
17: H.remove(⟨s,w[1∶l]⟩)
18: end while
19: if ∀w[1∶l] ∈ Bt,wl = </s> then break
20: end if
21: end for
22: return Bt.max()

Implementing H as a Heap, operations
(add, remove,max) take O(log ∣V∣)

generate num_beams (k),
num_return_sequences

stopping condition is
early_stopping = True (also False,
never)
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Single pass decoding
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9: s← score(w[1∶l] ○ w)
10: H.add(⟨s,w[1∶l] ○ w⟩)
11: end for
12: end for
13: Bt ← ∅
14: while ∣Bt ∣ < k do
15: ⟨s,w[1∶l]⟩ ← H.max()
16: Bt.add(⟨s,w[1∶l]⟩)
17: H.remove(⟨s,w[1∶l]⟩)
18: end while
19: if ∀w[1∶l] ∈ Bt,wl = </s> then break
20: end if
21: end for
22: return Bt.max()

k: beam size, M: maximum length, p patience
V: Vocabulary, score(⋅): scoring function.
1: B0 ← {⟨0,<s>⟩}, F0 ← ∅
2: for t ∈ {1, . . . ,M − 1} do
3: H ← ∅, Ft ← Ft−1
4: for ⟨s,w[1∶l]⟩ ∈ Bt−1 do
5: for w ∈ V do
6: s← score(w[1∶l] ○ w),
7: H.add(⟨s,w[1∶l] ○ w⟩)
8: end for
9: end for
10: Bt ← ∅
11: while ∣Bt ∣ < k do
12: ⟨s,w[1∶l]⟩ ← H.max(),
13: if wl = </s> then
14: Ft.add(⟨s,w[1∶l]⟩)
15: else
16: Bt.add(⟨s,w[1∶l]⟩)
17: end if
18: H.remove(⟨s,w[1∶t]⟩)
19: end while
20: if ∣Ft ∣ = pk then break
21: end if
22: end for
23: return Ft.max()
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Single pass decoding

Pitfalls of Beam Search

Z From https://huggingface.co/blog/how-to-generate

Also [Holtzman et al., 2020]. This can make artificial text detection easy.
F. Yvon (ISIR) Text Generation Algorithms Aussois, April 2nd, 2025 14 / 45

https://huggingface.co/blog/how-to-generate


Single pass decoding

Pitfalls of Beam Search

The Beam Search “curse”

Russian–English (medium) Beam Size
10 50 75 100 150 1000

BLEU 24.9 23.8 23.6 23.3 22.5 3.7
METEOR 30.9 30.0 29.7 29.4 28.8 12.8
length 0.90 0.86 0.85 0.84 0.81 0.31

Results of the Russian–English translation system. We report BLEU and METEOR scores, as well as the ratio of
the length of generated sentences compared to the correct translations (length). From [Murray and Chiang,
2018]

Increasing beam width k hurts performance (!)
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The Beam Search “curse”

Russian–English (medium) Beam Size
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BLEU 24.9 23.8 23.6 23.3 22.5 3.7
METEOR 30.9 30.0 29.7 29.4 28.8 12.8
length 0.90 0.86 0.85 0.84 0.81 0.31

Results of the Russian–English translation system. We report BLEU and METEOR scores, as well as the ratio of
the length of generated sentences compared to the correct translations (length). From [Murray and Chiang,
2018]

Increasing beam width k hurts performance (!)

Length issues in beam search
Increasing k raises the likeliness of inserting a complete hypothesis in Bt

Complete hypotheses scores do not change;

Incomplete hypotheses scores only gets worse

Short sequences are more likely than longer ones

The problem is the MAP not the beam [Eikema and Aziz, 2020] ! Small beams hide this issue
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Single pass decoding

Pitfalls of Beam Search

Better solutions with regularized decoding objectives [Meister et al., 2020a]

[w∗1 . . .w∗T∗ ] = argmin
T,w[1∶T]

T+1

∑
t=1
− logP(wt ∣w<t;θ) − λR([w[1∶T]])

R([w[1∶T]]) compensates for length differences, biases towards longer sequences

1 R([w[1∶T]]) = T + 1: fixed bonus for each extra word
∼ score with average surprisal 1

T+1 ∑
T
t=1 − logP(wt ∣w<t;θ)

2 Runif ([w[1∶T]]) = 1
T ∑t(logP(wt ∣w<t;θ) − µt)2, with µt average surprisal

enforces uniform information rate

3 Rlocal([w[1∶T]]) = 1
T+1 ∑t(logP(wt ∣w<t;θ) − logP(wt−1 ∣w<t−1;θ))2,

enforces locally uniform information rate

4 Rmax([w[1∶T]]) = 1
T+1 maxt(− logP(wt ∣w<t;θ)),

enables high surprisal tokens

generate with length_penalty=λ to control output length
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Single pass decoding

Sampling Schemes for Text Generation

Ancestral sampling

w0 = <s>

∀t > 0,wt ∼ P(w ∣w<t;θ)

Recursion stops with </s> or when some maximum length Tmax is reached.

Ancestral sampling is non-deterministic: output varies, depending on the sharpness of P(w ∣w<t;θ)

Sampling requires generate do_sampling=True

softmax is very peaked: increase diversity with temperature τ to “flatten” the distribution with

exp
logit(w′,w<t;θ)

τ (τ is generate temperature)

better trade-off between likelihood and diversity [Keskar et al., 2019]:

P(w′ ∣w<t;θ) ∝ exp
logit(w′,w<t;θ)
τ × I(w′ ∈ w<t)

,

with I(w′ ∈ w<t) = 1 for “new tokens”, = λ > 1 for “old ones” (repetition_penalty for generate)
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Single pass decoding

Sampling Schemes for Text Generation

Top-k sampling [Fan et al., 2018]

w0 = <s>

Q(wt ∣w<t) ∝ {
P(wt ∣w<t;θ) if w ∈ top-k(P(W ∣w<t;θ))
0 otherwise

∀t > 0,wt ∼ Q(w ∣w<t)

Sample from a “truncated” distribution containing the k most likely symbols. Generation stops
with </s> or when some maximum time step Tmax is reached.

Finding the k most likely tokens is O(∣V∣ ∗ log k), the normalizer applies only over k elements.

- generate top_k
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Single pass decoding

Sampling Schemes for Text Generation

Nucleus sampling (top p, with variable p) [Holtzman et al., 2020]

w0 = <s>

Q(wt ∣w<t) ∝ {
P(wt ∣w<t;θ) if w ∈ top-p(P(W ∣w<t;θ))

0 otherwise

∀t > 0,wt ∼ Q(w ∣w<t)

p is the smallest integer such that ∑w∈top-p P(w ∣w<t; ;θ) > α. Sample from a “truncated”
distribution for the p most likely symbols, with variable p (α typically ∈ [0.7;0.9]).

α controls the size of the truncated vocabulary (Q(w ∣w<t) > 0).

- generate top_p
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Single pass decoding

Sampling Schemes for Text Generation

Locally Typical Sampling [Meister et al., 2023]

w0 = <s>

Q(wt ∣w<t) ∝ {
P(wt ∣w<t;θ) if w ∈ LTStop-p(P(W ∣w<t;θ))

0 otherwise

∀t > 0,wt ∼ Q(w ∣w<t)

LTStop-p(P(W ∣w<t;θ)) minimize ∑∣H(W∣w<t;θ) + logP(w ∣w<t;θ)∣ subject to
∑w∈LTStop-p P(w ∣w<t;θ) > α. Sample from a “truncated” distribution for the p most locally
typical symbols, with variable p (α typically ∈ [0.7;0.9]).

Locally typical prefers tokens with near average surprisal

In low uncertainty contexts, prefer high probability tokens

In high uncertainty contexts, pick token with near average surprisal (=information content)

generate: typical_p

related: Mirostat [Basu et al., 2021], sample with a target perplexity.
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Single pass decoding

Sampling Schemes for Text Generation

Top-k, top-p and typical sample from a truncated distribution Q(W ∣ <t;θ):
∀t, select vocabulary V+t ⊂ V.

∀t,w /∈ V+t ,Q(w ∣ <t;θ) = 0

Always sampling high probability words avoids derailing, yet, can be very risky:
1 generation may no longer terminate⇒ probability leakage to infinite strings.

2 may exclude interesting words
Using top-p, for p = 0.9, P(Duck ∣Donald) = 0.95 may exclude w =Trump

3 may include unlikely words
Using top-k, k = 20 may generate unlikely continuations for low-entropy distributions
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Single pass decoding

Sampling Schemes for Text Generation
Top-k, top-p and typical sample from a truncated distribution Q(W ∣ <t;θ):

∀t, select vocabulary V+t ⊂ V.

∀t,w /∈ V+t ,Q(w ∣ <t;θ) = 0

Always sampling high probability words avoids derailing, yet, can be very risky:
1 generation may no longer terminate⇒ probability leakage to infinite strings.

2 may exclude interesting words
Using top-p, for p = 0.9, P(Duck ∣Donald) = 0.95 may exclude w =Trump

3 may include unlikely words
Using top-k, k = 20 may generate unlikely continuations for low-entropy distributions

Remedies

solve (1) with consistent truncated sampling [Welleck et al., 2020a]: V+t → V+t ∪ {</s>}

how to mitigate (2) and (3) ? what is the right size for V+t ?

(P1) never truncate high probability words⇔ keep all w such that P(w ∣w<t;θ) > ϵ;
(P2) truncate more when entropy is low; truncate less when entropy is high

(P∗) sample only w for which the true P(w ∣ <t;θ) is provably > 0 (with rejection sampling)
[Finlayson et al., 2024]
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Single pass decoding

Sampling Schemes for Text Generation

η-Sampling [Hewitt et al., 2022]

w0 = <s>

Q(wt ∣w<t) ∝ {
P(wt ∣w<t;θ) if w ∈ V+t

0 otherwise

∀t > 0,wt ∼ Q(w ∣w<t)
V+t = {w ∈ V∣P(w ∣w<t;θ) ≥min(ϵ, α exp−H(Wt∣w<t;θ)}

Sample from a “truncated” distribution subject to principles (P1) and (P2).

α exp−H(Wt ∣w<t;θ) increases the sampling set when entropy is high

Yields better samples than typical, greedy, ancestral, nucleus and top-k

In [Hewitt et al., 2022]’s experiments, ϵ = 0.0003, α = √ϵ

- generate epsilon_cutoff, eta_cutoff
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Single pass decoding

Consistent Decoding for Consistent Models
Why we need a maximum decoding length

Consistent model (details in [Welleck et al., 2020a])

A consistent model is such that P(∣w[1∶T]∣ = ∞ ∣θ) = 0

A sufficient condition is that hidden states are uniformely bounded.
This implies that ∃ξ,∀, t,w<t,P(</s> ∣w<t;θ) > ξ

P(∣w[1∶T]∣ = T ∣θ) < (1 − ξ)T

lim
T→∞

(1 − ξ)T = 0
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Single pass decoding

Consistent Decoding for Consistent Models
Why we need a maximum decoding length

Consistent decoding algorithm

A consistent decoding algorithm generates a complete text with probability 1.

Inconsistency of decoding

Ancestral is consistent, greedy, beam, top-k, nucleus, typical, etc. are not consistent.
Argument: no guarantee that </s> will ever appear in the top-k, top-p, etc.

Consistent Decoding for Deterministic Search

w0 = <s>

Q(wt ∣w<t;θ) ∝
⎧⎪⎪⎨⎪⎪⎩

1 − α(ht) if w = </s>
α(ht) exp logit(w,w<t;θ)
∑w′ exp logit(w′,w<t;θ) otherwise

α(h0) = σ(logit(</s>,<s>;θ)) (1)

α(ht) = σ(logit(</s>,w<t;θ))(1 −P(</s> ∣w<t;θ)) (2)

With σ ∶ R→ [0;1 − ϵ], ϵ > 0, ϵ < 1. This ensures that Q(</s> ∣w<t;θ) is monotonically increasing, meaning
that </s> eventually happen.
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Diversity

Promoting Diversity in Text Generation

Diversity promotion has many forms

1 boosting surprisal in open-ended text generation

2 ensuring diversity in a set of solutions

3 mitigating repetition in texts (difficult - repetition can be a good thing)
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Diversity

Promoting Diversity in Text Generation
Boosting surprisal in open-ended text generation

Contrasting Expert and Amateur Models

New search objective:

w∗1 . . .w∗T∗ = argmax
T,w[1∶T]

T
∑
t=1

logP(wt ∣w<t;θ) − logP(wt ∣w<t;θAMA)

subject to∀t,w∗t ∈ V+t
V+t = {w ∈ V∣P(w ∣w<t;θ) ≥ αmax

w′
P(w′ ∣w<t;θ)}

Select probable words that are unlikely for a weaker amateur model.
Constraining the search to high probability words helps handle cases
where (a) Expert and Amateur agree on very low probability; (b) Expert
and Amateur agree on very high probability. Also respects (P1).

From [Li et al., 2023]

requires consistent tokenization for expert and amateur

see also: https://arxiv.org/pdf/2305.12675.pdf
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Diversity

Promoting Diversity in Text Generation
Generating Multiple Diverse Solutions

Ensuring Diversity in Beam Search

Maintains G beams B1
t . . .BG

t , such that hypotheses in Beam g must be diverse with respect to
B1

t . . .B
g−1
t

score(w[1∶l], g) = score(w[1∶l]) if g = 1

= score(w[1∶l]) + λ
g−1

∑
h=1

∆(w[1∶l],Bh
t ), otherwise

∆(w[1∶l],Bh
t ) = ∑

w′
[1∶l′]

∈Bh
t

δ(w[1∶l],w′[1∶l′]),with δ a similarity function

∆ can be any string comparison (set differences for bag-of-words or bag-of-ngrams; Levenshtein distance;
neural similarity, etc.)

beams can run in parallel with a time delay

generate: num_beam_groups (G), diversity_penalty (λ)
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Diversity

Promoting Diversity in Text Generation
Avoiding Repetitions

Contrastive Search (greedy version) [Su et al., 2022]

w0 = <s>

∀t > 0,wt = argmax
w∈V̄

(1 − α) logP(w ∣w<t) − αmax{sim(hw,hws) ∶ 1 ≤ s ≤ t − 1}

hw is the latent representation associated to w; sim is a similarity function (e.g. cosine). Extra
penalty term for repetitions. Generation stops with </s> or when some maximum length Tmax is
reached.

assumes repetitions can be detected in embedding space

generate: penalty_alpha= α Z https://huggingface.co/blog/introducing-csearch

naive version with no_repeat_ngram_size: disable n-gram repetition

DoLa contrasts inner vs. outer layers to increase factuality [Chuang et al., 2024]
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Diversity

Combining Beam-Search and Sampling

k: beam size, M: maximum length,
V: Vocabulary, score(⋅): scoring function.
1: B0 ← {⟨0,<s>⟩}
2: for t ∈ {1, . . . ,M − 1} do
3: for ⟨s,w[1∶l]⟩ ∈ Bt−1 do
4: if wl = </s> then
5: H.add(⟨s,w[1∶l]⟩)
6: continue
7: end if
8: for i ∈ range(k) do
9: < logp,w >∼ P(W ∣w[1∶l];θ)
10: H.add(⟨s + logp,w[1∶l] ○ w⟩)
11: end for
12: end for
13: Bt ← ∅
14: while ∣Bt ∣ < k do
15: ⟨s,w[1∶l]⟩ ← H.max()
16: Bt.add(⟨s,w[1∶l]⟩)
17: H.remove(⟨s,w[1∶l]⟩)
18: end while
19: if ∀w[1∶l] ∈ Bt,wl = </s> then break
20: end if
21: end for
22: return Bt.max()

licences do_sampling=True and
num_beams > 0 !

the Heap H never contains more than k2

entries

sampling on line 9 can implement any
sampling scheme (top-k, top-p, etc)

alt take 1: sample from Ht ∝ local scores
(line 15)

alt take 2: Kool et al.
[2019-06-09/2019-06-15]
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Advanced topics Fast Generation with Speculative sampling

Faster Generation with Speculative Sampling
Details in [Leviathan et al., 2023] and [Chen et al., 2023]

Overview

Sampling algorithms are autoregressive: they return one sample at each timestep.

At step t speculative sampling uses a simpler model to generate S draft tokens wt+1 . . .wt+S
autoregressively, then “validates” the tokens with the large model in parallel with accept /
reject procedure.

Why? Potential to validate multiple tokens in one parallel forward pass.

Figure from Leviathan et al. [2023], K > 4

generate: assistant_model (assistant_tokenizer)
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Advanced topics Fast Generation with Speculative sampling

Faster Generation with Speculative Sampling
Details in [Leviathan et al., 2023] and [Chen et al., 2023]

1: sample K drafts [wt+i, q(wt+i)], i = 1 . . .K
2: evaluate drafts [wt+i, p(wt+i)]
3: sample ui ∼ Unif[0 ∶ 1], i = 1 . . .K
4: accept← True ; i← 1
5: while accept and i ≤ K do
6: if q(wt+i) < p(wt+i) then
7: i← i + 1 ▷ accept
8: else if ui < q(wt+i)

p(wt+i)
then

9: i← i + 1 ▷ accept
10: else
11: accept← False ▷ reject
12: ∀w, r(w) ∝ (max(0, p(w) − q(w)))
13: sample wt+i ∼ r(w)
14: end if
15: end while

Notations:

p(w) = P(W ∣w<t;θ),
q(w) = Q(W ∣w<t;θ

′)
V+ = {w∣q(w) > p(w)}
oversampled tokens

V− = {w∣q(w) ≤ p(w)};
undersampled tokens

Claim: speculative sampling generates
tokens under p(w)

1 w ∈ V+? accept with proba p(w)
q(w) ⇒ p′(w) = q(w) × p(w)

q(w) = p(w)
2 w ∈ V−? p′(w) = q(w) always accept and there is a second chance:

p′(w)+ = ∑
v∈V+

q(v) × (1 − p(v)
q(v)

) × ( p(w) − q(w)
∑w′∈V− p(w′) − q(w′)

) = p(w) − q(w)
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Part III

Constrained Generation
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Constraining Text Generation

Generating with simple constraints

length constraints (soft and hard) – for beam search

no repetition (soft and hard penalties)

with in-text / cross-text diversity (soft and hard penalties)

A smorgasbord of additional constraints

lexical / terminological choices (positive and negative, hard and soft) [Keskar et al., 2019]

language, idiom, sociolect (hard)

style, consistency, toxicity, polarity, stance, etc (soft)

optimizing other global scores: alignment score, backward model (translation); coverage
score (summarization), etc.

Updated search goals: restricted search space (hard), new search objective (soft)
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Guiding Decoding with Soft Constraints

Soft constraints

A soft or probabilistic constraint for text w[1∶T] is a model P(A ∣w[1∶T],C;λ), where A is a
(binary) discrete attribute representing the constraint.

For instance: A = 1 for harmfull / toxic texts, 0 for harmless content;

Probabilistic constraints can be learned from supervision:

“generatively” with P(w[1∶T] ∣a,C;λ)∀a: learns / adapt multiple LMs - potentially costly

“discriminatively” with P(A ∣w[1∶T],C;λ): LM + classification head

Generative to discriminative score use Bayes rule

P(A ∣w[1∶T],C;λ) ∝ P(A)P(w[1∶T] ∣A,C;λ)
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Guiding Decoding with Soft Constraints

Soft constraints

A soft or probabilistic constraint for text w[1∶T] is a model P(A ∣w[1∶T],C;λ), where A is a
(binary) discrete attribute representing the constraint.

For instance: A = 1 for harmfull / toxic texts, 0 for harmless content;

Decoding with constraints

A LM computes P(w[1∶T] ∣θ), how to generate w[1∶T] that simultaneously

is likely fluent: high logP(w[1∶T] ∣C;θ)
likely satisfies constraint: high logP(A ∣w[1∶T],C;λ) ?

one requirement is based on the LM prior, one on the class posterior
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Guiding Decoding with Soft Constraints

Soft constraints

A soft or probabilistic constraint for text w[1∶T] is a model P(A ∣w[1∶T],C;λ), where A is a
(binary) discrete attribute representing the constraint.

For instance: A = 1 for harmfull / toxic texts, 0 for harmless content;

Training-based methods

fine-tuning, VAEs, GAN – all these methods requires retraining a model

[Ctrl], a class-conditional models (with class tokens) [Keskar et al., 2019].
Learns θ with [ctrl:]w1 . . .wT , a model for P(w[1∶T] ∣ [ctrl:]; θ)

[ctrl:] is generic - represent style or domain or language or even length.
Require a finite set of predefined control codes for training

GeDi [Krause et al., 2021] trains [ctrl] with {a, ā} and guide generation with Bayes rule

P(A = a ∣w[1∶T];λ) =
P(a)∏t P(wt ∣w<t,a;λ)

∑a′ P(a′)∏t P(wt ∣w<t,a′;λ)

Soft constraint A is promoted in decoding with P(w ∣w<t;θ)P(a ∣w[1∶t−1]w;θ′)α

The trick is to compute P(wt ∣w<t,A;θ) in parallel for a, ā
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Generating with Hard Rational Constraints

Multiple types of Hard Constraints

1 watch your language bad_words_ids

2 force words in output (e.g., QA, MT with term constraints): force_words_ids

3 question answering with fixed choices

4 structured answers (e.g. JSON records or csv tables)

5 code generation
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Generating with Hard Rational Constraints

Rational Languages

Rational languages are languages represented by Rational Expressions (a.k.a RegExps), are also
languages represented by (Deterministic) Finite Automata (DFAs).

3

1
a

b

2 4

b

d

a

Accomodate finite lists of words and sequences, numerics, http / mail addresses, etc
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Generating with Hard Rational Constraints

Implementing Rational Constraints

Requirements:

1 Transitions mapping (states, words) to next states.

restrict choice to valid continuations
apply transition; update state

2 List of final states: add </s> to valid word list

Caveats

1 increase complexity (one search / state)

2 words are not tokens

3 compatible with beam?

4 generalizes to simple (deterministic) CF grammars

Check it out - with outlines library: https://github.com/dottxt-ai/outlines
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Part IV

Meta-Generation Strategies
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Meta-generation techniques

Motivations

complex constraints in generation

generation of long, structured output:
justifications, “reasonning” steps, code, etc

Adavanced Search Strategies

1 parallel search (combines multiple complete generations)

reranking (pick one out-of-N)
transform (build a new one out-of-N)

2 heuristic tree search (MCTS, A∗)

3 refinement, local search, self-critics, self-improvement, etc

+ Hybrid strategies: eg., N tree-search, then aggregate, etc.
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Meta-generation techniques

Unifiying terms

context S ≡ input prompt (+ critics / refinements) C

search states S ≡ generated prefix, can be complete or incomplete

basic action ≡ generation of one token w

policy vπθ (S) = w means w = argmaxP(W ∣S;θ) or w ∼ P(W ∣S;θ)

final / output reward R(S,C), for S complete state.

R(S) boolean: grammaticality test, hard constraint, provable solution
R(S) scalar: soft constraint
R(S) approximated or learned with confidence estimation⇒ R̂(S,C)

a.k.a verifier model

state value vπ(S) =≡ Ew[1∶T]∼P( ∣ S;θ)(R(S⊕w[1∶T],C)), can be estimated v̂πϕ(S) or learned
vπϕ(S)

intermediary steps decompose [w[1∶T]] as [w[1∶T1] . . .w[1∶TK−1]w[1∶TK]]. w[1∶TK] is the final
output.

intermediary steps can be scored too !
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Illustration: Beam Search with Self-Evaluation
Problem statement: improved search for mathematical “reasoning”

.

Q

Q

Ɛ𝜆(s
1:t

1)

Ɛ𝜆(s
1:t

2)

…
Ɛ𝜆(s

1:t
n-1)

Ɛ𝜆(s
1:t
n)

Ɛ𝜆(s
1:t
n+1)

…

Ɛ𝜆(s
1:t

2n-1)

Ɛ𝜆(s
1:t

2n)

s1 s2 s3 … st-1

s1 s2 s3 … st-1
Kept Candidate 2

st2n-1

st1

st2

…

stn-1

stn+1

…

st2n

stn

Kept Candidate 1

s1 s2 … sT
R = [s1, s2, …, sT] = s1:T

Q …

…
…

…
…

…

… 

Timestep 1 Timestep 2 Timestep T

s1
1

s1
2

s1
3

s1
n

s1
n-1

s2
1

s2
2

s2
n

s2
n+1

s2
n+2

s2
2n

sT1

sTn

sTn+1

sTn+2

sT2n

sT2

Multi-step 
Reasoning (k=2)
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a

Self-Eval

Gen
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Select k Paths

Reasoning Chain

Predicted Final Answer

Stochastic Beam Search

Gen

Self-Eval
🤖
LLM

from [Xie et al., 2023]

Changes to standard beam search
1 generate n complete steps for each of k states in beam Bl−1

2 evaluate y[1∶Tl] ∶ G(y[1∶Tl]∣[y[1∶T1] . . . y[1∶Tl−1]) with auxiliary model (nk times)

3 sample k best steps in Bl−1 according to:

Eλ(S) = logP([y[1∶T1] . . . y[1∶Tl] ∣C;θ) + G(y[1∶Tl]∣[y[1∶T1] . . . y[1∶Tl−1])
λ
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Parallel Search

Reranking 101
Picking one out-of-M

Reranking as Meta Generation
1 generate M complete solutionsWS = {[w[1∶T]](m),m = 1 . . .M}

e.g., based on logP([w[1∶T]] ∣C;θ)
2 evaluate [w[1∶T]](m) with output reward R([w[1∶T]],C′,θ′)
3 return [w[1∶T]]∗ = argminm R([w[1∶T]](m),C′,θ′)
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Parallel Search

Reranking 101
Picking one out-of-M

Reranking as Meta Generation
1 generate M complete solutionsWS = {[w[1∶T]](m),m = 1 . . .M}

e.g., based on logP([w[1∶T]] ∣C;θ)
2 evaluate [w[1∶T]](m) with output reward R([w[1∶T]],C′,θ′)
3 return [w[1∶T]]∗ = argminm R([w[1∶T]](m),C′,θ′)

Design of generate (for M): (diverse) beam-search ? (diverse) sampling ? stochastic beam
search ? Multiple models and checkpoints ? Multiple prompts? Impact of M?

num_return_sequences

Design of evaluate: length control; score of a larger or better model (θ′); increased context
(C’); use auxiliary models of grammaticality, style, toxicity, stance, polarity; use result of
execution (code); also watermarking; privacy; etc.
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Parallel Search

Reranking 101
Picking one out-of-N

Voting as Meta Generation
1 generate M solutionsWS = {[w(m)][1∶T],m = 1 . . .M} based on model logP([wm][1∶T] ∣C;θ)
2 evaluate [w(m)][1∶T] with output reward R([w[1∶T]],C′,θ′)
3 Voting procedures:

1 return [w∗[1∶T]] = argmax[w[1∶T]]∑m I([w[1∶T]](m) = [w[1∶T]]) (simple vote)

2 return [w∗[1∶T]] = argmax[w[1∶T]]∑m λmI([w[1∶T]](m) = [w[1∶T]])

with λm ∝ R([w[1∶T]](m) (weighted vote)
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Parallel Search

Reranking 101
Picking one out-of-N

Voting as Meta Generation
1 generate M solutionsWS = {[w(m)][1∶T],m = 1 . . .M} based on model logP([wm][1∶T] ∣C;θ)
2 evaluate [w(m)][1∶T] with output reward R([w[1∶T]],C′,θ′)
3 Voting procedures:

1 return [w∗[1∶T]] = argmax[w[1∶T]]∑m I([w[1∶T]](m) = [w[1∶T]]) (simple vote)

2 return [w∗[1∶T]] = argmax[w[1∶T]]∑m λmI([w[1∶T]](m) = [w[1∶T]])

with λm ∝ R([w[1∶T]](m) (weighted vote)

Design of generate (for M): (diverse) beam-search ? (diverse) sampling ? stochastic beam
search ? Multiple models and checkpoints ? Multiple prompts? Impact of M?

num_return_sequences

Design of evaluate: length control; score of a larger or better model (θ′); increased context
(C’); use auxiliary models of grammaticality, style, toxicity, stance, polarity; use result of
execution (code); also watermarking; privacy; etc.

Main compute tradeoff: M vs. cost of one generation
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Parallel Search

Reranking 101
Picking one out-of-N

Voting as Meta Generation
1 generate M solutionsWS = {[w(m)][1∶T],m = 1 . . .M} based on model logP([wm][1∶T] ∣C;θ)
2 evaluate [w(m)][1∶T] with output reward R([w[1∶T]],C′,θ′)
3 Voting procedures:

1 return [w∗[1∶T]] = argmax[w[1∶T]]∑m I([w[1∶T]](m) = [w[1∶T]]) (simple vote)

2 return [w∗[1∶T]] = argmax[w[1∶T]]∑m λmI([w[1∶T]](m) = [w[1∶T]])

with λm ∝ R([w[1∶T]](m) (weighted vote)

for R([w[1∶T]],C′,θ′) binary, recovers the hard constraint case – akin to rejection sampling

for [w[1∶T]] = [w[1∶Tr] ⊕w[1∶Ta]] comprising “reasoning” and answer part, returning
[w∗[1∶T]] = argmax[w[1∶T]]∑m I([w[1∶Ta]](m) = [w[1∶T]])
is self-consistency, marginalizes over “reasoning” steps.
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Parallel Search

Minimum Bayes Risk Decoding
Context and Concepts

ℓ([w[1∶T]], [v[1∶S]]) ∶ (<s>V∗</s>) × (<s>V∗</s>) → R+ a global dissimilarity function

ℓ(x, y) small when x and y are “similar”

ℓ([w[1∶T]], [v[1∶S]]) = 1 − I([w[1∶T]] = [v[1∶S]])
one-hot dissimilarity, all (non identical) pairs of sequences have ℓ = 1

ℓ([w[1∶T], v[1∶S]]) = 1 −NED([w[1∶T]], [v[1∶S]])
normalized edit distance, normalized minimum number of edits from w[1∶T] to v[1∶S]

ℓ([w[1∶T]], [v[1∶S]]) = 1 −BLEU([w[1∶T]], [v[1∶S]])
reference based metrics - n-gram overlap (BLEU, METEOR for MT, Rouge for summarization)

ℓ([w[1∶T]], [v[1∶S]]) = − cos(Emb([w[1∶T]]),Emb([v[1∶S]])):
cosine dissimilarity in embedding space, generalize to neural metrics (BLEURT, BertScore, COMET)
[Suzgun et al., 2023]
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Parallel Search

Minimum Bayes Risk Decoding
Main idea

For fixed [w[1∶t]], the risk of [w[1∶T]]

R([w[1∶T]]) = ES,[v[1∶S]]∼P(ℓ([w[1∶T]], [v[1∶S])])

= ∑
[v[1∶S]]

P(v[1∶S])ℓ([w[1∶T]], [v[1∶S]])

Minimum Bayes Risk decoding seeks

[w∗[1∶T∗]] = argmin
T,[w[1∶T]]

R([w[1∶T]])

= argmin
T,[w[1∶T]]

ES,[v[1∶S]]∼P(ℓ([w[1∶T]], [v[1∶S]]))

= argmin
T,[w[1∶T]]

∑
S,[v[1∶S]]

P(v[1∶S])ℓ([w[1∶T]], [v[1∶S]])

The optimal sequence is (on average) the closest to all other sequences
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Parallel Search

Minimum Bayes Risk Decoding
Intuition: why is MBR is a good idea ?
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Parallel Search

Minimum Bayes Risk Decoding
Intuition: why is MBR is a good idea ?

0- the mode (argmaxP([w[1∶T]] ∣θ)) may be anomalous and risky [Eikema and Aziz,
2020]

1- If likely solutions (high P([w[1∶T]] ∣θ)) have a good quality, being close to many good
solutions ([w∗[1∶T]]) is also likely to have a good quality [smoothness of search space]

2- For the one-hot dissimilarity: ℓ([w[1∶T]], [v[1∶S]]) = 1 − I([w[1∶T]] = [v[1∶S]]),

ES,[v[1∶S]]∼P(ℓ([w[1∶T]], [v[1∶S]])) = ∑
[v[1∶S]]≠[w[1∶T]]

P([v[1∶S]] ∣θ)

=1 −P([w[1∶T]] ∣θ)

Minimizing the risk maximizes the model probability: back to MAP !

3- The MAP maximizes a proxy quality score P(w[1∶t] ∣θ), MBR directly optimizes the true
metric ℓ() instead

See also the motivations of Bertsch et al. [2023].
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Parallel Search

Minimum Bayes Risk Decoding
Theory and Practice of MBR

Two sources of intractability

[w∗[1∶T]] = argmin
T,[w[1∶T]]

∑
S,[v[1∶S]]

P([v[1∶s]])ℓ([w[1∶T]], [v[1∶S]])

1 argminT,[w[1∶T]]: argmin in a very very large set

2 ES,v[1∶S]∼P() = ∑S,[v[1∶S]]: ∑ over many many terms

Two practical remedies

1 argmin in a very very large set⇒ restrict search toWs

2 ∑ over many many terms⇒ replace E() by Monte-Carlo approximation of size ∣WMC ∣

[w∗[1∶t]] = argmin
T,[w[1∶T]]∈Ws

∑
[v[1∶S]]∈WMC

ℓ([w[1∶T]], [v[1∶S]])
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Parallel Search

Minimum Bayes Risk Decoding
MBR: a meta-generation algorithm

ℓ(): Dissimilarity ℓ, model P(W ∣C;θ)
1: WMC ← generate(P( ∣C;θ),N, . . . )
2: WS ← generate(P( ∣C;θ),M, . . . )
3: mins← +∞
4: for [w[1∶T]] ∈ WS do
5: s← 0, mbr← <s></s>
6: for [v[1∶S]] ∈ WMC do
7: s← s + ℓ([w[1∶T]], [v[1∶S]])
8: end for
9: if s < mins then

10: mins← s, mbr← [w[1∶T]]
11: end if
12: end for
13: return(mins,mbr)

generate 1: is for MC estimates:
prefer sampling with replacement,
unbiased (ancestral)

generate 2: is to identify promising
solutions: prefer beam-seach, if
possible diverse

Alternative forWS: reuseWMC ⇒
back to reranking

Alternative forWS: use multiple
models, multiple checkpoints,
multiple prompts, etc.

Run-time is sampling time + O(MN);
larger N yields better MC estimates;
larger M yields better exploration
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Parallel Search

Minimum Bayes Risk Decoding
MBR: a meta-generation algorithm

ℓ(): Dissimilarity ℓ, model P(W ∣C;θ)
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10: mins← s, mbr← [w[1∶T]]
11: end if
12: end for
13: return(mins,mbr)

generate 1: is for MC estimates:
prefer sampling with replacement,
unbiased (ancestral)

generate 2: is to identify promising
solutions: prefer beam-seach, if
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Alternative forWS: reuseWMC ⇒
back to reranking
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Heuristic token-level and step-level search

Better Searching for Good Solutions with MCTS
Monte-Carlo Tree Search [Kocsis and Szepesvári, 2006]

The problem with output reward R([w[1∶T]],C)

searching with P([w[1∶T]] ∣C;θ) may yield poor / unappropriate solutions

ensemble-based methods (best-out-of-N, MBR) require multiple inferences, no garantee of
improvement

MCTS delivers solutions with a high output reward, based on a estimates of R([w[1∶T]],C)
for partial sequences [w[1∶t].
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Heuristic token-level and step-level search

Better Searching for Good Solutions with MCTS
Monte-Carlo Tree Search [Kocsis and Szepesvári, 2006]

Concept and Terminology (adapted from RL / POMDP)

state: St ⇔ context + current prefix C, [w[1∶t]; S is the set of states (prefixes).
States can be complete (wt = </s>) or incomplete.

actions: pick next possible token wt+1 ∈ V
using action w in state St: yields new state St ⊕w ≡ w[1∶t+1] = w[1∶t]w

policy πθ: St → V; next action selection rule. For instance:

πθ(St) = argmaxw P(w ∣ St;θ): greedy policy (deterministic)
πθ(St) = w ∼ P(w ∣ St;θ): sampling policy (non-deterministic) - also top-k, top-p etc.

value (of a state, given policy): vπ ∶ S → R; vπ(St) estimates the best score F() attainable
from St.

Use state values to obtain MC samples of local subtrees that guide the generation policy
towards leaf nodes with large scores.
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Heuristic token-level and step-level search

Better Searching for Good Solutions with MCTS
Monte-Carlo Tree Search [Kocsis and Szepesvári, 2006]

Generating one token with MCTS
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Heuristic token-level and step-level search

Better Searching for Good Solutions with MCTS
Monte-Carlo Tree Search [Kocsis and Szepesvári, 2006]

1: procedure MCTS(K ∶ int)
2: S← S0(≡C,<s>)
3: while ! complete(S) do
4: for K iterations do
5: MCTS-Explore(S)
6: end for
7: w∗ ← argmaxw∈V cnt(S⊕w)
8: S← S⊕w∗

9: end while
10: return S
11: end procedure

1: procedure PUCT-SCORE(S,w)
2: U ← Q(S⊕w)
3: U ← U + cpuct P(w ∣S;θ)

√
cnt(S)

1+cnt(S,w)
4: return U
5: end procedure

1: procedure MCTS-EXPLORE(S ∶ state)
2: cnt(S) ← cnt(S) + 1
3: w∗ ← argmaxw PUCT-Score(S,w)
4: if open(S⊕w∗)∧! complete(S⊕w∗) then
5: Q← MCTS-Explore(S⊕w∗)
6: Q(S) ←max(Q(S),Q)
7: else if ! complete(S⊕w∗) then
8: open(S⊕w∗) ← true
9: estimatevπ(S⊕w∗)

10: Q← argmaxopen(S⊕w)vπ(S⊕w)
11: ▷ aggregate with max or avg
12: else
13: Q← F(S⊕w∗)
14: end if
15: return Q
16: end procedure

PUCT-SCORE trades-off high scores (Q) and likely, unvisited states
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Heuristic token-level and step-level search

Better Searching for Good Solutions with MCTS
Monte-Carlo Tree Search [Kocsis and Szepesvári, 2006]

Computing state values

In state S, how to estimate vπ(S)?
1 sampling based: apply sampling using roll-out policy P( ∣S;θ) (e.g. [Chaffin et al., 2022])

return underestimates, as costly as a complete generation for each simulation.

2 learning based: learns to predict vπ(S;λ) using an auxilary network [Leblond et al., 2021]
get complete (complete) samples [w[1∶T]] and associated scores; learns to predict scores for incomplete
states; this can be hard.

3 repurpose value networks trained with reinforcement learning (PPO) during LLM alignment
step [Liu et al., 2024]
show improvements even when using PPO-tuned language models.
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Heuristic token-level and step-level search

Better Searching for Good Solutions with MCTS
A compute-effective approach: REBASE [Wu et al., 2025]

Motivations

MCTS empirically dominated by
simpler alternatives eg., best-of-N

exploration costly and inefficient

main idea: use trained reward R̂(S;λ)
to improve search

return a target number N of solutions
⇒ best-of-N

sample(S,K) samples K times
w ∼ P(W ∣S;θ), returns sample

1: procedure REBASE(N ∶ int)
2: S← S0(≡C,<s>)
3: C ← ∅, t ← 1
4: S1 ← sample(S,M(S))
5: while ∣C∣ < N do
6: for S ∈ St do
7: if complete(S) then
8: C ← C ∪ {S}
9: N ← N − 1

10: end if
11: end for
12: St+1 ← ∅
13: for S ∈ St ∖ C do
14: M(S) ∝ (N − ∣C∣) exp R̂(S;λ)
15: St+1 ← St+1 ∪ sample(S,M(S))
16: end for
17: t ← t + 1
18: end while
19: end procedure
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Refinement

Local search and reformulation

Principles of local search

Intuition:
1 generate an initial solution [w(0)[1∶T]],

2 hill-climb neighour solutions guided by output reward model R(, )
neighbours are defined by simple operators: replace a word, insert / delete a word, swap two words, etc
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Refinement Refining for speed

Generating Texts Non-Auto-Regressively

Parallel Text Generation

standard left-to-right / right-to-left decoding is slow

decoding in arbitrary order does not solve this [Welleck et al., 2019]

alternative: generate multiple words simultaneously

How ? Parallel Unmasking.
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Refinement Refining for speed

Generating Texts Non-Auto-Regressively
Mask-Predict by Ghazvininejad et al. [2019]

1: procedure MASK-PREDICT
Input: C ∶ Context, T: Target Length
Output: Generated Sequence

2: w0 = [,wT+1 =],∀t ∈ [1 ∶ T],wt ∼ Unif(V)
3: for K iterations do
4: ToMask← top-kt(− logP(wt ∣C,w−t;θ))
5: for (t ∈ ToMask) do
6: wt ←MASK
7: end for
8: for (t ∈ ToMask) do
9: wt ← unmask(wt)

10: end for
11: end for
12: return([w[1∶T]])
13: end procedure

a better initialization samples
independently given C

unmask (l9) can be argmax or
obtained via sampling

T is unknown ? Generate with
multiple lengths in parallel

masking and generation can be
performed in parallel

K and k trade-off speed and fluency

recover Gibbs sampling with k = 1 and
iterative masking (instead of top-k)
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Refinement Refining for speed

Generating Texts Non-Auto-Regressively

+ + + + + +

<s>

cat sit mat

Levenshtein Transformer

a sat on

Levenshtein Transformer

Levenshtein Transformer

<s> </s>

✓ ✘ ✓

cat mat<s> </s>

[1] [3] [0]

cat mat </s>[PLH] [PLH] [PLH] [PLH]

cat mat<s> </s>a sat on the

the

Transformer Block_2

Transformer Block_1

Transformer Block_L

…

BOS x2 x3 3/+ x5 EOS

1 2 3 4 5 6

h1 h2 h3 h4 h5 h6

Placeholder 
Classifier

Token 
Classifier

Deletion 
Classifier

Token 
Embeddings

Position 
Embeddings

Classifiers

Delete Tokens

Insert 
Placeholders

Fill-in Tokens

The Levenvshtein Transformer [Gu et al., 2019]

“Multimodality” problem and solutions (latent alignments, KD, etc) [Xiao et al., 2023]

Mostly used for standard translation tasks (also: term constraints [Xu and Carpuat, 2021])

Decoding starts from scratch or initial solution [Xu et al., 2023]

F. Yvon (ISIR) Text Generation Algorithms Aussois, April 2nd, 2025 31 / 45



Refinement Refining for speed

Generating Texts Non-Auto-Regressively

+ + + + + +

<s>

cat sit mat

Levenshtein Transformer

a sat on

Levenshtein Transformer

Levenshtein Transformer

<s> </s>

✓ ✘ ✓

cat mat<s> </s>

[1] [3] [0]

cat mat </s>[PLH] [PLH] [PLH] [PLH]

cat mat<s> </s>a sat on the

the

Transformer Block_2

Transformer Block_1

Transformer Block_L

…

BOS x2 x3 3/+ x5 EOS

1 2 3 4 5 6

h1 h2 h3 h4 h5 h6

Placeholder 
Classifier

Token 
Classifier

Deletion 
Classifier

Token 
Embeddings

Position 
Embeddings

Classifiers

Delete Tokens

Insert 
Placeholders

Fill-in Tokens

LevT uses
3 classifiers to predict Deletions and Insertions

D deletion classifier predicts y ∈ {0,1}
I placeholder classifier predicts y ∈ [0 ∶ N]
I token classifier predicts y ∈ [1 ∶ ∣V∣]
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Refinement Refining for speed

Generating Texts Non-Auto-Regressively

Training with parallel sentences (f, e)
1 erase random words in e, yields e’

2 train placeholder & token prediction with
samples (e’, e”), (e”, e)

3 generate output e”’

4 train deletion prediction with (e, e”’)

Decode with e(0) = [e[1∶T]]:
PLH - TOK - DEL + repeat in iterative refinement

LevT encoder

Un chat dort .

f

A cat is sleeping .e

• e' is obtained from e by randomly     
      dropping tokens.

• e'' is obtained from e' by inserting 

      placeholders from Ref labels.

• e''' is obtained from e'' by replacing

      placeholders with Pred labels.

.cat is

Placeholder Insertion

010 0
011 0

e'

Ref:
Pred:

.cat is

Token Prediction

sleepingThe
sleepingA

[] []

Ref:
Pred:

e''

.sleepingcatThe is

Deletion

0001 0
0001 0Ref:

Pred:

e'''

Dual Policy learning with:

roll-in policy πins for [I]nsertion: empty string or random deletion from e

roll-in policy πdel for [D]eletion: model’s Insertions

expert policy π∗ from the optimal alignment⇔ Edit Distance
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Ref:
Pred:

.cat is

Token Prediction
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[] []

Ref:
Pred:

e''

.sleepingcatThe is

Deletion

0001 0
0001 0Ref:

Pred:

e'''

Dual Policy learning with:

roll-in policy πins for [I]nsertion: empty string or random deletion from e

roll-in policy πdel for [D]eletion: model’s Insertions

expert policy π∗ from the optimal alignment⇔ Edit Distance

An effective model for NAR Machine Translation
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Refinement Refining for speed

Self-Refinements with Prompting

Require: input Cx, model P(W ∣C,θ), prompts {Cg,Cf ,Cr},
stop condition stop()

1: S0 = generate(πθ,Cx) ▷ Initial generation
2: for iteration t ∈ 0,1, . . . do
3: Ft = generate(πθ,Cx ⊕Cf(St)) ▷ Feedback
4: if stop(Ft, t) then ▷ Stop condition
5: break
6: else
7: St+1 = generate(πθ,Cx ⊕Cr(S0 ⊕ F0 ⋅ ⋅ ⋅ ⊕Cf(St))) ▷ Refine
8: end if
9: end for

10: return St

[Madaan et al., 2023]

prompts are task-dependent

prompts can include few-shot examples
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Refinement Refining for speed

Self-Refinements with Prompting

I have some code . Can you give one sugges t ion to improve r e a d a b i l i t y .
Don ’ t f i x the code , j u s t g ive a sugges t ion .

{code}

Prompting for Feedback CF - Readability task

I have some code . Can you give one sugges t ion to improve r e a d a b i l i t y .
Don ’ t f i x the code , j u s t g ive a sugges t ion .

{code}

{ sugges t ion }

Now f i x the code .

Prompting for Self-Refinement CR - Readability task
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Refinement Refining for speed

Conclusions

Generation is Tricky

implementation details matter in generation

generation parameters matter both for quality and speed

there is much more than temperature, top-k and top-p

A call for better documenting text generation parameters in evaluations

Generation is not Solved

generation with refinement and self-critics

training multi-step generation and planing

finding compute optimal generation policies?
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